chaseterraceacademy

Year 10 Higher: Curriculum Implementation Plan

Mathematics - Year 10 Higher - Overview				
Knowledge and Skills Students will be taught to...	Reading, Oracy, Literacy	Formative Assessment	Summative Assessment	Link to GCSE Content
Please see individual units below.	- Reading worded questions to understand the context and decide how to approach a problem - Paired discussion of problems - Writing responses to worded questions such as "Explain why..." - Expanding vocabulary of key mathematical terms - Giving verbal responses in class question-andanswer	- Questioning in class - Self-assessment - Peer-assessment - Starter and homework questions - Mini-tests - Show of hands and other forms of whole-class feedback - Review of student work during lessons - Mini-whiteboards	Whole-class assessments towards the end of each term, based on work completed during the year to date. Full GCSE mock examination in the summer term, in preparation for Year 11.	Please see individual units below.

- Know and use the fact that $a^{n / m}=(\sqrt[m]{a})^{n}$ to evaluate expressions
- Calculate with standard form with and without a calculator (REVISION)
- Practise GCSE-style problems involving standard form in context
- Know the definition of a surd and a rational/irrational number
- Add and subtract simple expressions involving surds e.g. $5 \sqrt{3}+2 \sqrt{3}-\sqrt{3}$
- Understand and use multiplication of simple surds e.g. $\sqrt{5} \times \sqrt{7}$
- Simplify a surd e.g. $3 \sqrt{50}=3 \times \sqrt{25} \sqrt{2}=15 \sqrt{2}$
- Expand a single or double bracket involving surds
- Understand and use division of simple surds e.g. $\frac{2 \sqrt{50}}{\sqrt{10}}=2 \sqrt{5}$
- Rationalise a fraction where the denominator is a single term e.g. $2 \sqrt{7}$
- Apply Pythagoras' theorem to problems involving surds

Mathematics - Unit 4-Linear Inequalities

Knowledge and Skills - Students will be taught to..

- Understand the situations in which an inequality is reversed
- Extend solving linear inequalities to negative terms of the unknown e.g 20 $3 x<8$
- Represent the solution of a linear inequality using set notation
- Find the set of integers that are solutions to an inequality, including using set notation
- Continue to solve problems by constructing and solving linear inequalities in one variable
- Solve a simple three-part inequality e.g. $10<3 x+9<40$

Mathematics - Unit 5 - Transformation
Knowledge and Skills - Students will be taught to...

- Identify and describe a single transformation, given two congruent 2D shapes (i.e. rotation, reflection, or translation)
- Know that rotation, reflection and translation produce a congruent image, whereas enlargement produces a similar image
- Enlarge a 2D shape using a negative scale factor and a centre of enlargement
- Identify the scale factor and centre of an enlargement with a negative scale factor

Calculate with roots
Calculate with numbers in standard form
Estimate powers and roots of any given positive number
Calculate exactly surds
Simplify surd expressions involving squares e.g. $\sqrt{12}$
Rationalise denominators of surds
Estimate powers and roots e.g. $\sqrt{51}$ to the nearest whole number
Use surds in exact calculations without a calculator
Simplify expressions with surds, including rationalising denominators

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
Solve linear inequalities in one variable, representing the solution set on a number line
Represent the solution to an inequality using set notation
Express solutions to inequalities in set notation e.g. $\{\mathbf{x}: \mathbf{x}<\mathbf{3}\}$
Solve linear inequalities in one variable, expressing solutions on a number line using the conventional notation
Understand and use the symbols $<, \leq,>$ and \geq
it 5 - Transformation
Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
Describe the changes and invariance achieved by combinations of rotations, reflections and translations
Describe translations as 2D vectors
Use x - and y-coordinates in plane geometry problems, including transformations of simple shapes
Perform a specified translation using a column vector
Identify the mirror line of a reflection from a shape and its image

- Perform a sequence of two or more transformations on a 2D shape and fully describe the single transformation that would be the equivalent
- Identify points/lines that are invariant under a given transformation
- Practise a variety of higher-tier GCSE transformation questions
- Solve more complex problems involving similarity, linked to enlargement
- Understand the implications of enlargement on area and volume
- Move freely between scale factors for length, area and volume
- Solve practical problems involving length, area and volume in similar figures

Use a column vector to describe a translation
Identify a mirror line $\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{b}, \mathrm{y}=\mathrm{x}$ or $\mathrm{y}=-\mathrm{x}$ from a simple shape and its image under reflection
Identify the centre, angle and direction of a rotation from a simple shape and its image under rotation
Perform a sequence of isometric transformations (reflections, rotations or translations), on a simple shape; describe the resulting transformation and the changes and invariance achieved

Knowledge and Skills - Students will be taught to..

- Identify and interpret roots, intercepts and turning points of quadratic functions from their graphs
- Find approximate solutions to equations of the form $a^{2}+b x+c=0$ (roots) using a graph
- Find approximate solutions to equations of the form $a x^{2}+b x+c=k$ using a graph
- Find approximate solutions to equations of the form $a x^{2}+b x+c=d x+e$ using the point of intersection of a line and a curve on a graph
- Factorise a quadratic expression of the form $a x^{2}+b x+c$
- Factorise a difference of two squares of the form $a x^{2}-c$
- Solve a quadratic of the form $a x^{2}+b x+c=0$ by factorising, including rearranging first
- Hence identify the roots and sketch a graph of a quadratic function
- Solve a quadratic of the form $x^{2}+b x+c=0$ by factorising (REVISION)
- Solve problems in context by forming and solving a quadratic equation
- Simplify an algebraic fraction that involves factorisation (linear and quadratic expressions)

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
Simplify and manipulate algebraic expressions by factorising quadratic expressions of the form $x^{2}+b x+c$, including a difference of two squares
Factorise quadratic expressions of the form $a x^{2}+b x+c$
Simplify and manipulate algebraic fractions by factorising quadratic expressions of the forms $x^{2}+b x+c$ and $a x^{2}+b x+c$, including a difference of two squares

Factorise quadratic expressions of the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$

Solve quadratic equations, including those that require rearranging, by factorising Find the roots of a quadratic equation algebraically
Interpret solutions to equations in context
Identify and interpret roots, intercepts and turning points of quadratic functions graphically
Find approximate solutions to a quadratic equation using a graph
Use graphs to find approximate roots of quadratic equations Identify intercepts and, using symmetry, the turning point of graphs of quadratic functions

Knowledge and Skills - Students will be taught to...

$$
\text { Mathematics - Unit } 7 \text { - Proportion } 1
$$

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)

- Recognise tables and graphs showing direct and inverse proportion (REVISION)
- Construct and use simple formulae describing direct and inverse proportion e.g. $a=k b$ (REVISION)
- Construct and use formulae for direct and inverse proportion involving powers and roots e.g. $a=k \sqrt{b}$
- Solve more complex GCSE-style direct/inverse proportion problems in a range of contexts
- Combine ratios in simple cases e.g. find $A: B$ given $A: C$ and $B: C$ (REVISION)
- Solve more complex problems involving the combining of ratios
- Solve complex problems combining understanding of fractions, percentages and/or ratio
- Express ratios in the form 1:n or m:1 (REVISION)
- Use ratios in the form 1:n to compare proportions
- Relate ratios to formulae e.g. $2 y=3 x$, what is x : y ?

Knowledge and Skills - Students will be taught to..

- Plot points on a scatter diagram, identifying correlation and interpreting the relationship shown (REVISION)
- Construct a line of best fit and using it to make predictions (REVISION)
- Identify outliers; distinguish these from anomalies (REVISION)
- Understand the lack of reliability of making predictions outside the range of the original data (extrapolating)
- Estimate a \% using a scatter diagram e.g. 'What percentage passed Maths and English?'
- Understand that correlation does not necessarily indicate causation
- Use a sample to infer properties of a population
- Understand the limitations of sampling
- Know what is meant by simple random sampling
- Find the quartiles for discrete data sets, and understand the meaning of these
- Calculate and interpret the interquartile range
- Understand why the IQR is generally a more reliable measure of spread than the range
- Construct and interpret a box plot for discrete data
- Use box plots to compare distributions

Recognise and interpret graphs that illustrate direct and inverse proportion
Interpret equations that describe direct and inverse proportion
Construct (and interpret) equations that describe direct and inverse proportion
Recognise and interpret graphs that illustrate direct and inverse proportion
Recognise that if $y=k / x$ then y is inversely proportional to x
Formulate equations and solve problems involving a quantity in inverse proportion to a power or root of another quantity
Identify and work with fractions in ratio problems
Find the ratio of quantities in the form 1 : n
Understand the relationship between ratio and linear functions

Mathematics - Unit 8 - Data 1

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
Use and interpret scatter graphs of bivariate data
Recognise correlation and know that it does not indicate causation
Draw estimated lines of best fit on a scatter graph and use them to make predictions Interpolate and extrapolate apparent trends from a scatter graph, whilst knowing the dangers of so doing
Plot and interpret scatter diagrams for bivariate data; recognise correlation
Interpret correlation within the context of the variables
Draw a line of best fit by eye, and use it to make predictions Interpolate and extrapolate from data, and be aware of the limitations of these

techniques

Appreciate there may be errors in data from values (outliers) that do not 'fit' Recognise outliers on a scatter graph
Appreciate the distinction between correlation and causation
Describe a population using statistics

- Continue to compare data given in more than one form	Interpret, analyse and compare the distributions of data sets from univariate empirical distributions using quartiles and the inter-quartile range
Mathematics - Unit 9 - Algebra 2	
Knowledge and Skills - Students will be taught to...	Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
- Solve problems in context by deriving and solving two linear simultaneous equations by elimination, including where one or both equations need to be multiplied (REVISION) - Solve two linear simultaneous equations with fraction/decimal coefficients - Draw a line / lines and shade a region to show an inequality such as $x>3, y<-$ $2,4<x<6$ - Draw a line and shade a region to show a linear inequality stated explicitly e.g. $y \leq 2 x+3$ - Draw a line and shade a region to show a linear inequality stated implicitly e.g. $2 x+y<12$ - Draw lines and shade a region for multiple linear inequalities in two variables - State the inequality/inequalities satisfied by a shaded region on a given graph - Find the set of integer coordinates that are solutions to a set of inequalities in two variables, including representing these using set notation - Find numerical and algebraic outputs from functions defined using a function machine, expression or equation - Use this context to practise arithmetic with large integers, decimals, fractions and negatives	Solve two linear simultaneous equations Set up and solve two linear simultaneous equations in two variables algebraically Solve linear inequalities in two variables, representing the solution set on a graph Represent the solution to an inequality using set notation Solve (several) linear inequalities in two variables, representing the solution set on a graph Identify the solution sets of linear inequalities in two variables, using the convention of dashed and solid lines Express solutions to inequalities in set notation e.g. $\{x: x<3\}$
Mathematics - Unit 10 - Geometric Reasoning	
Knowledge and Skills - Students will be taught to...	Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)

- Solve problems involving angles on parallel lines, identifying alternate, corresponding and co-interior angles (REVISION)
- Know and use the conditions for triangles to be congruent (SSS, SAS, RHS, ASA)
- Prove that two given triangles are congruent
- Deduce one or more Circle Theorems by investigation
- Know the following Circle Theorems, including the wording, and apply them:

The angle at the centre is double the angle at the circumference

- Angles in the same segment are equal
- The angle in a semicircle is a right angle
- Opposite angles in a cyclic quadrilateral add up to 180 [
- Two tangents from an external point are the same length
- A radius and a tangent meet at 90°
- The perpendicular bisector of a chord is a radius

The Alternate Segment Theorem

- Use the fact that base angles of an isosceles triangle are equal
- Create a geometrical proof, including applying circle theorems

Knowledge and Skills - Students will be taught to..

- Construct a cumulative frequency curve
- Use a cumulative frequency curve to estimate values, including percentages
- Use a cumulative frequency curve to estimate the median, quartiles and IQR
- Use a cumulative frequency curve to construct a box plot
- Understand why a bar chart can be misleading if the class widths are different
- Construct a histogram for grouped data with unequal class intervals

Know and use alternate angles or corresponding angles on parallel lines are equal Apply the standard circle theorems concerning angles, radii, tangents and chords, and use them to prove related results
Know and apply the sine rule and cosine rule to find unknown lengths and angles Apply angle facts to find angles in rectilinear figures, and to justify results in simple proofs. e.g. 'The sum of the interior angles of a triangle is $180^{\circ \prime}$
Use the basic properties of isosceles, equilateral and right-angled triangles to find lengths and angles in rectilinear figures and in simple proofs
Apply congruent triangles in calculations and simple proofs. e.g. The base angles of an isosceles triangle are equal
Apply angle properties in more formal proofs of geometrical results

Apply the standard circle theorems

Prove that two triangles are congruent using the cases SSS, ASA, SAS, RHS

Mathematics - Unit 11 - Data 2
Links to KS4 National Curriculum (red) \& Exam board specification (blue/black) Construct and interpret diagrams for grouped discrete data and continuous data, including cumulative frequency graphs and histograms with equal and unequal class intervals, and know their appropriate uses

Interpret, analyse and compare the distributions of data sets from univariate empirical distributions using box plots
Interpret and construct diagrams for grouped data as appropriate, including cumulative frequency graphs and histograms (with either equal or unequal class intervals)
Draw and interpret box plots

Knowledge and Skills - Students will be taught to...

- Find the HCF/LCM of two numbers using prime factor form (REVISION)
- Solve practical problems involving HCF or LCM
- Solve GCSE-style problems where numbers are given in prime factor form
- Practise using the FACT function on a scientific calculator
- Identify bounds and error intervals (inequalities) for both discrete and continuous quantities which have been rounded or truncated to the nearest integer, 10, 100, 5,20 etc., or to a given number of significant figures (REVISION)
- Identify bounds for discrete/integer quantities (REVISION)
- Truncate a decimal number to a given number of decimal places
- Write an error interval for a value that has been truncated
- Solve simple problems involving one truncated quantity
- Solve a bounds problem involving more than one rounded measurement
- Convert a recurring decimal of the form $0 . \dot{x}, 0 . \dot{x} \dot{y}$, or $0 . \dot{x} y z ̇$ to a fraction
- Convert a recurring decimal of the form $0.0 \dot{x}$ or $0.0 \dot{x} \dot{y}$, to a fraction
- Check the result by using division to convert back to a decimal, without a calculator where appropriate
Mathematics - Unit 13 - Quadratics 2

Knowledge and Skills - Students will be taught to...

- Complete the square for a quadratic expression ($a=1$)
- Use a completed-square form to identify, for a quadratic function:
- the turning point (vertex)
- the minimum value, and the value of x for which it occurs
- the equation of the line of symmetry of the graph
- Solve a quadratic equation by completing the square ($a=1$)
- Know and apply the Quadratic Formula to solve any quadratic equation
- Solve equations involving fractions that can be rearranged into the form $\mathrm{ax}^{2}+$ $b x+c=0$
- Continue to solve a range of problems that generate a quadratic equation

Knowledge and Skills - Students will be taught to..
Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)

Identify prime numbers
Use power notation in expressing a whole number as a product of its prime factors Find the HCF and LCM of two whole numbers from their prime factorisations
Use inequality notation to write down an error interval for a number or measurement rounded to a given degree of accuracy
Apply and interpret limits of accuracy
Calculate the upper and lower bounds of a calculation using numbers rounded to a known degree of accuracy
Understand the difference between bounds of discrete and continuous quantities
Apply and interpret limits of accuracy when rounding and truncating
Change recurring decimals into their corresponding fractions
Convert a recurring decimal to an exact fraction

- Quadratics 2

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
Deduce the turning points of quadratic functions by completing the square

Complete the square on a quadratic expression

Solve quadratic equations by factorising, completing the square and by using the quadratic formula

Recall and use the quadratic formula

Rearrange and solve quadratic equations by factorising, completing the square or using the quadratic formula
Find the roots of a quadratic equation algebraically

- Solve complex problems involving speed and converting between units of speed (REVISION)
- Solve more complex problems involving density
- Solve simple and complex problems involving pressure
- Understand units for pressure e.g. $\mathrm{N} / \mathrm{m}^{2}$ or Pascals (Pa)
- Solve problems involving rates of pay, population density and unit pricing
- Solve problems involving other rates of change
- Calculate the result of a repeated percentage change, profit or loss (including compound interest), and finding the percentage of a given increase, decrease, profit or loss (REVISION)
- Compare investments earning simple interest with those earning compound interest (REVISION)
- Determine the number of increases or decreases by a percentage needed to obtain or exceed a given value, showing sufficient calculations to justify the result
- Practise a selection of GCSE-style questions on this topic
- Find the result of a single fractional increase or decrease (REVISION)
- Calculate the original quantity, given the result of a single fractional increase or decrease
- Find the result of a repeated fractional increase or decrease
- Identify the overall fraction or percentage of a repeated fractional change

Mathematics - Unit 15 - Probability

Knowledge and Skills - Students will be taught to.

- Extend applying the 'product rule for counting' to increasingly complex contexts
- Use this as a context to practice multiplying large integers
- Know and use the addition law of probability ('OR')
- Understand that the addition law only applies to mutually exclusive events
- Know and use the multiplication law of probability ('AND')
- Understand that the multiplication law only applies to independent events
- Use this context to practise skills with fractions and decimals
- Draw tree diagrams to show the outcomes of two or three combined events
- Label tree diagrams with probabilities for independent/dependent events probabilities looking at the totals

Use the product rule for counting

Convert between related compound units (speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts
Use and convert simple compound units (e.g. for speed, rates of pay, unit pricing)
Know and apply in simple cases: speed $=$ dist \div time
Know and apply: density = mass \div volume
Use and convert other compound units (e.g. density, pressure)
Set up, solve and interpret the answers in growth and decay problems, including compound interest
Calculate simple interest, including in financial contexts
Solve problems step-by-step involving multipliers over a given interval, for example compound interest, depreciation, etc.
Calculate with fractions greater than 1
Calculate exactly with fractions
Use fractions in exact calculations without a calculator
Carry out more complex calculations, including the use of improper fractions
Express one quantity as a fraction of another

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
Use the addition law for mutually exclusive events
Use a two-circle Venn diagram to enumerate sets, and use this to calculate related

Calculate probabilities of simple combined events, for example rolling two dice and

Calculate probabilities, expressed as fractions or decimals, in simple experiments with equally likely outcomes e.g. flipping coins, rolling dice

Construct a Venn diagram to classify outcomes and calculate probabilities

- Use a probability tree diagram to solve a range of problems involving dependent and independent combined events
- Extend using two-way tables for calculating probabilities to GCSE-style problems
- Extend using Venn diagrams for calculating probabilities to GCSE-style problems, including where the intersection needs to be deduced

Mathematics - Unit 16 - Loci \& Vectors
Knowledge and Skills - Students will be taught to...

- Construct the bisector of an angle (REVISION)
- Construct the perpendicular bisector of a line segment (REVISION)
- Extend previous work on loci to more complex problems involving shading regions satisfied by multiple criteria
- Understand that a vector quantity represents both magnitude (size) and direction, whereas a scalar quantity has only magnitude
- Draw a column vector as 'arrow' on a grid, or write a column vector for a given 'arrow'
- Add and subtract column vectors, understanding this as a resultant of two vectors
- Multiply a column vector by a scalar (constant)
- Work with combinations of 'letter' vectors shown as arrows on a grid
- Solve simple geometrical problems involving vectors

Mathematics - Unit 17-Trigonometry 2

Knowledge and Skills - Students will be taught to...

- Use basic trigonometry to solve problems in context
- Practise giving answers to an 'appropriate degree of accuracy' in this context
- Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°
- Know the exact values of $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°
- Use the Sine Rule to find a missing side or angle in a non-right-angled triangle
- Know and use the Cosine Rule to find a missing side or angle in a non-rightangled triangle

Use tree diagrams and other representations to calculate the probability of independent and dependent combined events
Use the product rule for counting numbers of outcomes of combined events

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black) Construct the perpendicular bisector and midpoint of a line segment
Construct the bisector of an angle formed from two lines
Understand the term 'equidistant'
Apply ruler and compass constructions to construct figures and identify the loci of points, to include real-world problems
Describe translations as 2D vectors
Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors
Understand addition, subtraction and scalar multiplication of vectors
Represent a 2-dimensional vector as a column vector, and draw column vectors on a square or coordinate grid

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
Apply trigonometric ratios to find angles and lengths in right-angled triangles in 2D
Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0,30,45,60,90^{\circ}$; know the exact value of $\tan \theta$ for $\theta=0,30,45,60^{\circ}$
Recall and use the trigonometric identities for right-angled triangles
Know and apply the trigonometric ratios, $\sin \theta, \cos \theta$ and $\tan \theta$ and apply them to find angles and lengths in right-angled triangles in 2D figures
Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°; know the exact value of $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°
Know and apply the sine rule and cosine rule to find lengths and angles

Mathematics - Unit 18 - Sequences

Knowledge and Skills - Students will be taught to...

- Find the nth term of a quadratic sequence, of the form $a x^{2}+b$
- Find the nth term of a quadratic sequence, of the form $a x^{2}+b x+c$
- Recognise and use simple geometric sequences, r^{n} or $a r^{n}$, when r is positive and rational
- Recognise and use geometric sequences, a^{n}, when r is a surd
- Find the next three terms, or a given term, in a geometric sequence
- Find a formula for the nth term of a simple geometric sequence
- Solve problems involving geometric sequences
- Find the nth term of a sequence of fractions
- Decide whether a sequence is linear, arithmetic, geometric, quadratic or none of these

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
Recognise and use quadratic sequences and simple geometric progressions (r^{n} where n is an integer and r is positive and rational)
Recognise and use geometric progressions of the form r^{n} where n is an integer and r is a surd
Deduce expressions to calculate the nth term of quadratic sequences Recognise and use other sequences
Recognise quadratic sequences, and simple geometric progressions (r^{n} where n is an integer and r is a positive rational number)

Find a formula for the nth term of a quadratic sequence

Generate and find nth terms of other sequences

Mathematics - Unit 19 - Graphs

Knowledge and Skills - Students will be taught to...

- Identify the gradient of a line using a line which is perpendicular to it
- Identify the equation of a line using a line which is perpendicular to it
- Show that two lines are perpendicular (using $m_{1} \times m_{2}=-1$)
- Identify the equation of a circle from its graph
- Identify the equation of a circle from a description of its centre and radius/diameter
- Use the equation of a circle to sketch or describe its graph
- Find the equation of a tangent to a circle at a given point
- Interpret the gradient at a point on a curve as the instantaneous rate of change
- Interpret the gradient of a chord as an average rate of change
- Solve problems involving the gradients of graphs in context
- Calculate an estimate for the area under a curve
- Solve problems involving the area under graphs in context
- Find the acceleration and distance from a piecewise-linear speed-time graph
- Find the instantaneous acceleration from a curved speed-time graph
- Find the average acceleration for a section of a speed-time graph
- Estimate the distance travelled from a curved speed-time graph

Links to KS4 National Curriculum (red) \& Exam board specification (blue/black)
Plot and interpret graphs, including reciprocal graphs and graphs to non-standard
functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration
Identify and interpret roots, intercepts and turning points of quadratic functions graphically
Find approximate solutions to a quadratic equation using a graph
Use the form $y=m x+c$ to identify perpendicular lines
Deduce turning points of quadratic functions by completing the square
Recognise and use the equation of a circle with the centre at the origin
Find the equation of the tangent to a circle at a given point
Calculate or estimate gradients of graphs and areas under graphs, including quadratic and other non-linear graphs

Interpret the gradient of a graph, or area under a graph, in cases such as distancetime graphs, velocity-time graphs and financial graphs
Interpret the gradient at a point on a curve as the instantaneous rate of change

chaseterraceacademy

$\left.\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Apply the concepts of instantaneous and average rates of change (gradients of } \\ \text { tangents and chords) in numerical, algebraic and graphical contexts } \\ \text { Use graphs to find approximate roots of quadratic equations Identify intercepts and, }\end{array} \\ \underline{\text { using symmetry, the turning point of graphs of quadratic functions }} \\ \text { Calculate or estimate gradients of graphs, and interpret in contexts such as distance- } \\ \text { time graphs, velocity-time graphs and financial graphs } \\ \text { Apply the concepts of average and instantaneous rate of change (gradients of } \\ \text { chords or tangents) in numerical, algebraic and graphical contexts } \\ \text { Calculate or estimate areas under graphs, and interpret in contexts such as distance- } \\ \text { time graphs, velocity-time graphs and financial graphs } \\ \text { Sketch graphs of quadratic functions, identifying the turning point by completing } \\ \text { the square }\end{array}\right] \begin{array}{l}\text { Identify and find equations of perpendicular lines } \\ \text { Recognise and use the equation of a circle with centre at the origin } \\ \text { Calculate the equation of a tangent to a circle at a given point }\end{array}\right]$

