cience 1. Cell Structure Nucleus

biology

ology

 \mathbf{m}

Ð

 \mathbf{m}

11

(

chaseterra academy

Ribosomes Protein synthesis

 Cell Membrane Controls what goes in and out the cell

Contains DNA and

controls the cell

Mitochondria Respiration

Cytoplasm Where chemical reactions occur

- Chloroplast Absorb light for photosynthesis
- Vacuole Stores cell sap
- Cell Wall Made of cellulose to strengthen the cell
- Plasmid

Contains additional genes

2. Specialised Cells: They are differentiated so they have a modified structure to enable them to carry out a specific function.

Eukaryotic cells - larger, more complex cells,

Prokaryotic cells – very small simple cells, no

nucleus (loose DNA and plasmids) e.g. bacteria

Plant cell

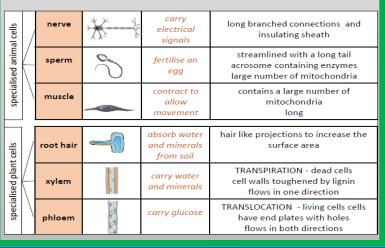
Vacuole

ound in plant cells

Cell wal

Yeast cell

with nucleus e.g. animal/plant/fungus


ell me

Bacterial cell

Cell wal

Molecule of circula DNA

Cytoplasn

3. Microscopes and Magnification:

Microscopes allow us to see greater detail in small samples:

- Adjust the focus (turn the fine focus) to make the image clearer
- Increase the magnification (change the objective lens) to make the image larger

Magnification is the number of times larger an image is compared with the real size of the object.

Resolution is the ability to distinguish between 2 separate points.

Types of microscopes

	Feature	Light microscope	Electron microscope
	Radiation used	Light rays	Electron beams
	Max magnification	1500x	2 000 000x
	Resolution	200nm	0.2nm
	Size of microscope	Small and portable	Very large and not portable
	Cost	Low	High

Required Practical 1 – USING A LIGHT MICROSCOPE

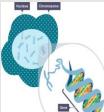
- 1. Use a stain to make organelles visible (e.g. cell wall, nucleus).
- 2. Get the specimen as flat and thin as possible.
- 3. Select the lowest objective lens to give the largest field of view.
- 4. Use the coarse focus to move the stage.
- Use the fine focus to make the 5. image clearer.
- 6. Calculate the total magnification = eye piece lens x objective lens

Calculating magnification:

Magnification (M) = Image size (I) / actual size (A) **Calculating actual size**

- Use a RULER to measure the image in mm
- Multiply by 1000 to CONVERT mm into µm
- Divide image size by the magnification
- REMEMBER there are 1000µm in 1mm and 1000nm in 1µm

4. Stem Cells


Stem cells are undifferentiated cells that can **clone** to make more stem cells or specialise into any type of body cell by differentiation.

- + replace/repair tissue, grow organs, cure disease
- destroys embryo, ethical issues, moral/religious objections

Therapeutic cloning - an embryo is cloned from the patient. Stem cells are taken from the embryo to treat the patient's disease. No rejection issues as genes are the same.

5. Chromosomes and Genes:

Human body cells contain 46 (23 pairs of) chromosomes.

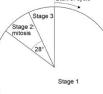
Chromosomes are long, rolled-up strands of DNA which carry the genes. Genes are sections of DNA that code for characteristics.

Males = 22pairs + XY Females = 22 pairs + XX

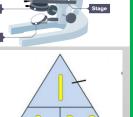
6. Cell Division:

Cells multiply by Mitosis to produce genetically identical cells. Stages of the cell cycle

Stage 1


Cell growth, increase in number of organelles and DNA replicates stage 2 Mitosis

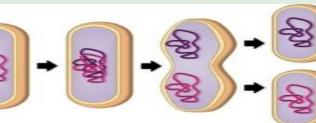
One set of chromosomes moves to each end of cell


Stage 3

Cytoplasm / cell membrane divides to form two (genetically) identical cells

Result = 2 daughter cells, genetically identical to each other and the parent cell



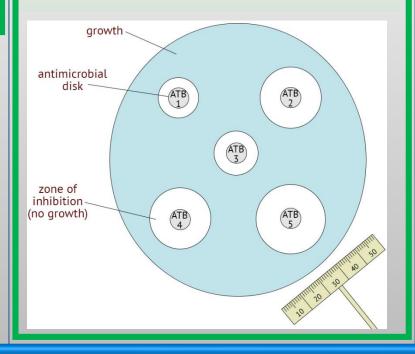


7. Culturing Microorganisms

Bacteria multiply by simple cell division (**Binary Fission**) as often as once every 20 minutes if they have enough nutrients and a suitable temperature.

The DNA loop is copied and the cytoplasm separates as the cell wall begins to pinch the cell in half.

Result = 2 genetically identical daughter cells and population growth is **exponential** (1>2>4>8>16>32>64>128....)


Bacteria can be grown in a nutrient broth solution or as colonies on an agar gel plate.

Sterile cultures of microorganisms are required for investigating the action of disinfectants and antibiotics.

8. PRACTICAL - INVESTIGATING THE EFFECT OF ANTISEPTICS ON BACTERIAL GROWTH

- 1. Using aseptic technique **inoculate** a petri dish with a **lawn** of *E.coli* bacteria.
- 2. Place discs of filter paper, soaked in a variety of antiseptics (eg mouthwash, hand-gel, disinfectant, water (control), onto the prepared petri dish.
- **3.** Incubate at 25°C for 48h
- 4. Using a mm scale ruler, measure the diameter of the **zone of inhibition** around each filter paper disc.
- 5. Calculate area of each clear areas using πr^2 .
- 6. Compare the effectiveness of each antiseptic.

More clear area = more bacteria killed = more effective antiseptic

9. Aseptic Technique

Preparing an uncontaminated culture.

Process	Why is it important?
Petri dishes and culture media must be sterilised before use	No unwanted bacterial growth
Lift lid only slightly and away from you	Prevents contamination from airborne bacteria
Inoculating loops used to transfer bacteria to the dish must be sterilised by passing them through a flame	No unwanted bacterial growth
The lid of the Petri dish should be secured with 2 pieces of tape and stored upside down	Air can get in but lid won't come off and no condensation will form on the lid
In school laboratories, cultures should generally be incubated at 25°C	No growth of pathogenic bacteria

chaseterrac academy

science

5