

3. Equations, symbols and units $\mathbf{O} = \mathbf{I} \mathbf{t}$ charge (C) = current (A) x time (s) $\mathbf{V} = \mathbf{I} \mathbf{R}$ voltage (V) = current (A) x resistance (Ω) $R_T = R_1 + R_2$ total resistance (Ω) = sum of all resistors $\mathbf{P} = \mathbf{I} \mathbf{V}$ power (W) = current (A) x voltage (V) $\mathbf{P} = \mathbf{I}^2 \mathbf{R}$ power (W) = current² (A) x resistance (Ω) $\mathbf{E} = \mathbf{Pt}$ energy transferred (J) = power (W) x time (s) $\mathbf{E} = \mathbf{Q}\mathbf{V}$ energy transferred (J) = charge (C) x voltage (V)

• Step Down transformers decrease the p.d. to a safe level (230V) to be used in homes and workplaces

120

100

60

Lenath (cm

SINGLE PHYSICS ONLY

10. Static electricity

When insulating materials rub against each other, they may become electrically charged. Electrons (e-) may be 'rubbed off' one material and on to the other.

- The material that gains electrons becomes negatively charged.
- The material that loses electrons is left with a positive charge.

Insulators prevent electrons from moving and the charge remains static.

Conductors cannot hold the charge, as the electrons can move through them.

11. Electric fields

- An electric field is a region where **charges** experience a force.
- All charged objects have an electric field around them.
- Field lines point away from positive charges and towards negative charges.

N Sп

chaseterrac