	1. Particle model			$\begin{aligned} & \circ \\ & \circ \\ & \circ \end{aligned} 0_{0}^{0}$
		SOLID	LIQUID	GAS
	Movement of Particles	Vibrate about a fixed point	Slide over each other	Random motion
	Arrangement of Particles	Tightly packed, regular structure	Tightly packed, free flowing	Spread out

2. Density

Density is a measure of the amount of matter (mass) packed into a given space (volume)

$$
\text { Density }\left(\mathrm{kg} / \mathrm{m}^{3}\right)=\underset{\text { volume }\left(\mathrm{m}^{3}\right)}{\operatorname{mass}(\mathrm{kg})}
$$

Mass \rightarrow measure on a top pan balance
Volume (regular) \rightarrow I $\times \mathrm{w} \times \mathrm{h}$ (measure dimensions with a ruler) Volume (irregular) \rightarrow lower object into a known volume of water and calculate: new volume - old volume = volume of object The density of a material changes as its state changes:
Solid = most dense, Gas = least dense

3. Energy and temperature
 Heating or cooling a material causes.

1. a change in the chemical potential store
(chemical bonds between particles form, break or stretch)
2. a change in the thermal energy store
(particles gain or lose speed)
The internal energy is the total amount of kinetic energy and potential energy of all the particles in the system.
Temperature is a measure of the average kinetic energy of the particles.

Specific latent heat \rightarrow The amount of energy required to change the state of 1 kg of substance without changing the temperature.

$$
\text { Energy transferred }(J)=\operatorname{mass}(\mathrm{kg}) \times \text { specific latent heat }(\mathrm{J} / \mathrm{kg})
$$

Specific latent heat of fusion \rightarrow The amount of energy required to convert 1 kg of substance from solid to liquid at a constant temperature.

Specific latent heat of vaporisation \rightarrow The amount of energy required to convert 1 kg of substance from liquid to gas at a constant temperature.

Reading the

 latent heat graph:* Flat lines = change of state with zero temp change
* Sloping lines $=$ temperature of the substance is increasing

5. Specific heat capacity

The specific heat capacity of a material is the energy required to raise one kilogram (kg) of the material by one degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$.

$$
\Delta E=m c \Delta \theta
$$

Energy $(J)=$ mass $(\mathrm{kg}) \times$ specific heat $\left(\mathrm{J} / \mathrm{Kg}^{\circ} \mathrm{C}\right) \times$ temperature $\left({ }^{\circ} \mathrm{C}\right)$ change capacity change

A low SHC = material will heat up and cool down quickly A high SHC = material will heat up and cool down slowly

The specific heat capacity of water is $\mathbf{4 , 2 0 0} \mathbf{J} / \mathbf{k g}^{\circ} \mathrm{C}$
It takes $4,200 \mathrm{~J}$ of energy to raise the temperature of 1 kg of water by $1^{\circ} \mathrm{C}$)

6. Particle motion in gases

The particles in a gas are in constant random motion so they frequently collide with each other and the walls of the container they are in.

The force acting on the container due to these collisions is at right angles to the container and causes gas pressure.
\uparrow Number of particles colliding each second over the same area $=\uparrow$ Pressure
\uparrow Particles' speed $=\uparrow$ Pressure

Temperature and Pressure:

If the volume of a container with a gas inside is constant, the pressure of a gas will increase as its temperature increases.
This happens because the molecules increase their average kinetic energy, colliding with the container wall more frequently,

The relationship between Temperature and Pressure at a constant volume is directly proportional.

8. Required Practical - specific heat capacity

The increase in temperature of a system depends on 3 things:

- The mass of the substance
- The energy input to the system
- The type of material

Aim: To measure the specific heat capacity of a sample of material.
Method:

1. Place the immersion heater into the central hole at the top of the metal block.
2. Place the thermometer into the smaller hole and put a couple of drops of oil into the hole to make sure the thermometer is surrounded by hot material.
3. Fully insulate the block by wrapping it loosely with cotton wool.
4. Record the temperature of the block.
5. Connect the heater to the power supply and turn it off after ten minutes.
6. After ten minutes the temperature will still rise even though the heater has been turned off and then it will begin to cool. Record the highest temperature that it reaches and calculate the temperature rise during the experiment.
7. Energy transferred is calculated by $\mathbf{P}=\mathbf{I V}$ and and then $\mathbf{E}=\mathbf{P t}$

Error: some energy will transfer to the surroundings (dissipate) this causes an overestimate of the SHC of the material

Hazard: Hot material can cause burns. Do not touch and keep apparatus away from the edge of the table.

SINGLE PHYSICS ONLY

9. Pressure in gases

Gas pressure is caused by the force exerted when particles collide with the walls of the container.
\uparrow temperature of a gas (at a constant volume) \uparrow pressure because the particles gain kinetic energy and collide more with the container walls.
\downarrow volume of container (at a constant temp) \uparrow pressure because the same number of particles collides with the walls of the container more frequently as there is less space. However, the particles still collide with the same amount of force.

Boyle's Law = pressure is inversely proportional to volume: $p V=$ constant
Pressure $\left(\mathrm{N} / \mathrm{m}^{2}\right) \times$ Volume $\left(\mathrm{m}^{3}\right)=$ constant

$$
p_{1} V_{1}=p_{2} V_{2}
$$

Doing work on a gas (eg. with a bike pump) transfers energy to the internal energy store and can cause the temperature of the gas to increase.

