Year 13: Curriculum Implementation Plan

Mathematics - AS - Applied Unit 1 - Data Collection	
Unit content:	By the end of the sub-unit, students should:
1.1 Populations and samples 1.2 Sampling 1.3 Non-random sampling 1.4 Types of data 1.5 The large data set	- understand and be able to use the terms 'population' and 'sample'; - know how to use samples to make informal inferences about the population; - be able to describe advantages and disadvantages of sampling compared to census. - understand and be able to use sampling techniques; - be able to describe advantages and disadvantages of sampling techniques; - be able to select or critique sampling techniques in the context of solving a statistical problem; - understand that different samples can lead to different conclusions about the population.
Mathematics - AS - Applied Unit 2 - Measures of Location and Spread	
Unit content:	By the end of the sub-unit, students should:
2.1 Measures of central tendency 2.2 Other measures of location 2.3 Measures of spread 2.4 Variance and standard deviation 2.5 Coding	- be able to calculate measures of location, mean, median and mode; - be able to calculate measures of variation, standard deviation, variance, range and inter-percentile range; - be able to interpret and draw inferences from summary statistics

Mathematics - AS - Applied Unit 3 - Representations of Data

Mathematics - AS - Applied Unit 3 - Representations of Data	
Unit content:	By the end of the sub-unit, students should:
3.1 Outliers	- know how to interpret diagrams for single variable data;
3.2 Box plots	- recognise and interpret possible outliers in data sets and statistical
3.3 Cumulative frequency	diagrams;
3.4 Histograms	- be able to select or critique data presentation techniques in the
3.5 Comparing data	context of a statistical problem; - be able to clean data, including dealing with missing data, errors and outliers.

Mathematics - AS - Applied Unit 4-Correlation	
Unit content:	By the end of the sub-unit, students should:
4.1 Correlation 4.2 Linear regression	- know how to interpret scatter diagrams and regression lines for bivariate data; - recognise the explanatory and response variables; - be able to make predictions using the regression line and understand its limitations; - understand informal interpretation of correlation; - understand that correlation does not imply causation.
Mathematics - AS - Applied Unit 5-Probability	
Unit content:	By the end of the sub-unit, students should:
5.1 Calculating probabilities 5.2 Venn diagrams 5.3 Mutually exclusive and independent events 5.4 Tree diagrams	- understand and be able to use mutually exclusive and independent events when calculating probabilities; - be able to make links to discrete and continuous distributions.

Mathematics - AS - Applied Unit 6 - Statistical distributions	
Unit content:	By the end of the sub-unit, students should:
6.1 Probability distributions	understand and be able to use simple, discrete probability
6.2 The binomial distribution	distributions, including the binomial distribution; 6.3 Cumulative probabilities
	- be able to identify the discrete uniform distribution;
	be able to calculate probabilities using the binomial distribution.

Mathematics - AS - Applied Unit 7-Hypothesis testing	
Unit content:	By the end of the sub-unit, students should:
7.1 Hypothesis testing 7.2 Finding critical values 7.3 One-tailed tests 7.4 Two-tailed tests	- understand and be able to apply the language of statistical hypothesis testing, developed through a binomial model. - be able to conduct a statistical hypothesis test for the proportion in the binomial distribution and interpret the results in context; - understand that a sample is being used to make an inference about the population; - appreciate that the significance level is the probability of incorrectly rejecting the null hypothesis.
Mathematics - AS - Applied Unit 8-Modelling in Mechanics	
Unit content:	By the end of the sub-unit, students should:
8.1 Constructing a model 8.2 Modelling assumptions 8.3 Quantities and units 8.4 Working with vectors	- understand the concept of a mathematical model, and be able to abstract from a real-world situation to a mathematical description - know the language used to describe simplifying assumptions; - understand the particle model; - be familiar with the basic terminology for mechanics; - be familiar with commonly-made assumptions when using models; - be able to analyse the model appropriately, and interpret and communicate the implications of the analysis in terms of the situation being modelled;

- understand and use fundamental quantities and units in the S.I. system: length, time and mass;
- Understand that units behave in the same way as algebraic quantities, e.g. meters per second is $\mathrm{m} / \mathrm{s}=\mathrm{m} \times 1 / \mathrm{s}=\mathrm{ms}^{-1}$
- understand and use derived quantities and units: velocity, acceleration, force, weight;
- know the difference between position, displacement and distance;
- know the difference between velocity and speed, and between acceleration and magnitude of acceleration;
- know the difference between mass and weight (including gravity);
- understand that there are different types of forces.

Mathematics - AS - Applied Unit 9 - Constant Acceleration	
Unit content:	By the end of the sub-unit, students should:
9.1 Displacement-time graphs 9.2 Velocity-time graphs 9.3 Constant acceleration formulae 1 9.4 Constant acceleration formulae 2 9.5 Vertical motion under gravity	- be able to draw and interpret kinematics graphs, knowing the significance (where appropriate) of their gradients and the areas underneath them. - recognise when it is appropriate to use the suvat formulae for constant acceleration; - be able to solve kinematics problems using constant acceleration formulae; - be able to solve problems involving vertical motion under gravity.
Mathematics - AS - Applied Unit 10 - Forces and Motion	
Unit content:	By the end of the sub-unit, students should:
10.1 Force diagrams 10.2 Forces as vectors 10.3 Forces and acceleration 10.4 Motion in 2 dimensions 10.5 Connected particles 10.6 Pulleys	- understand the concept of a force; understand and use Newton's first law. - understand and be able to use Newton's second law for motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2D (i, j) vectors.); - understand and use Newton's third law; equilibrium of forces on a particle and motion in a straight line; application to problems involving smooth pulleys and connected particles.

Mathematics - AS - Applied Unit 11 - Vectors	
Unit content:	By the end of the sub-unit, students should:
11.1 Functions of time 11.2 Using differentiation 11.3 Maxima and minima problems 11.4 Using integration 11.5 Constant acceleration formulae	- be able to use calculus (differentiation) in kinematics to model motion in a straight line for a particle moving with variable acceleration; - understand that gradients of the relevant graphs link to rates of change; - know how to find max and min velocities by considering zero gradients and understand how this links with the actual motion (i.e. acceleration $=0$). - be able to use calculus (integration) in kinematics to model motion in a straight line for a particle moving under the action of a variable force; - understand that the area under a graph is the integral, which leads to a physical quantity; - know how to use initial conditions to calculate the constant of integration and refer back to the problem.

Mathematics - A2 - Applied Unit 1 - Regression, Correlation and Hypothesis Testing

Mathematics - A2 - Applied Unit 1 - Regres	
1.1 Exponential models	By
1.2 Measuring correlation	
1.3 Hypothesis testing for zero correlation	

By the end of the sub-unit, students should:

- Understand exponential models in bivariate data
- Use a change of variable to estimate coefficients in an exponential model
- Understand and calculate the product moment correlation coefficient.
- Carry out a hypothesis test for zero correlation.

Mathematics - A2 - Applied Unit 2 - Conditional Probability	
Unit content:	By the end of the sub-unit, students should:
2.1 Set Notation 2.2 Conditional Probability 2.3 Conditional Probabilities in Venn Diagrams 2.4 Probability formulae 2.5 Tree diagrams	- Understand set notation in probability - Understand conditional probability - Solve conditional probability problems using two-way tables and Venn diagrams - Use probability formulae to solve problems - Solve conditional probability using tree diagrams
Mathematics -A2 - Applied Unit 3-The Normal Distribution	
Unit content:	By the end of the sub-unit, students should:
3.1 The normal distribution 3.2 Finding probabilities for normal distributions 3.3 The inverse normal distribution function 3.4 The standard normal distribution 3.5 Finding μ and σ 3.6 Approximating a binomial distribution 3.7 Hypothesis testing with the normal distribution	- Understand the normal distribution and the characteristics of a normal distribution curve - Find percentage points on a standard normal curve - Calculate values on a standard normal curve - Find unknown means and/or standard deviations for a normal distribution - Approximate a binomial distribution using a normal distribution - Select appropriate distributions and solve real-life problems in context - Carry out a hypothesis test for the mean of a normal distribution
Mathematics -A2 - Applied Unit 4-Moments	
Unit content:	By the end of the sub-unit, students should:
4.1 Moments 4.2 Resultant moments 4.3 Equilibrium 4.4 Centres of Mass 4.5 Tiliting	- Calculate the turning effect of a force applied to a rigid body - Calculate the resultant moment of a set of forces acting on a rigid body - Solve problems including uniform rods in equilibrium - Solve problems involving non-uniform rods - Solve problems involving rods on the point of tilting

Mathematics - A2 - Applied Unit 5 - Forces and Friction	
Unit content:	By the end of the sub-unit, students should:
5.1 Resolving forces 5.2 Inclined planes 5.3 Friction	- Resolve forces into components - Use the triangle law to find a resultant force - Solve problems involving smooth or rough inclined planes - Understand friction and the coefficient of friction - Use $F \leq \mu R$
Mathematics -A2 - Applied Unit 6-Projectiles	
Unit content:	By the end of the sub-unit, students should:
6.1 Horizontal projectiles 6.2 Horizontal and vertical components 6.3 Projectile at any angle 6.4 Projectile motion formulae	- Model motion under gravity for an object projected horizontally - Resolve velocity into components - Solve problems involving particles projected at an angle - Derive the formulae for time of flight, rang and greatest height, and the equation of the path of a projectile
Mathematics -A2 - Applied Unit 7-Applications of forces	
Unit content:	By the end of the sub-unit, students should:
7.1 Static particles 7.2 Modelling with statics 7.3 Friction and static particles 7.4 Static rigid bodies 7.5 Dynamics and inclined planes 7.6 Connected particles	- Find an unknown for when a system is in equilibrium - Solve statics problems involving weight, tension and pulleys - Understand and solve problems involving limiting equilibrium - Solve problems involving motion on rough or smooth inclined planes - Solve problems involving connected particles that require the resolution of forces

Unit content:	By the end of the sub-unit, students should:
8.1 Vectors in kinematics	\bulletWork with vectors for displacement, velocity and acceleration when 8.2 Vector methods with projectiles
8.3 Variable acceleration in one dimension using the vector equations of motion 8.4 Differentiating vectors Use calculus with harder functions of time involving variable 8.5 Integrating vectors elceleration	

