Chemistry Bridging Work – Summer 2024

As you embark upon your study of A-level chemistry, you will begin to explore the detailed structure of atoms (Topic 1) and chemical reactions. The topics that you will extend your current knowledge on over the 2-year course are outlined below

Unit 3.1 Physical Chemistry

- 3.1.1 Atomic structure
- 3.1.2 Amount of substance
- 3.1.3 Bonding
- 3.1.4 Energetics
- 3.1.5 Kinetics
- 3.1.6 Chemical equilibria and Le Chatelier's principle and Kc
- 3.1.7 Oxidation, reduction and redox equations
- 3.1.8 Thermodynamics (A-level only)
- 3.1.9 Rate equations (A-level only)
- 3.1.10 Equilibrium constant *Kp* for homogeneous systems (A-level only)
- 3.1.11 Electrode potentials and electrochemical cells (A-level only)
- 3.1.12 Acids and bases (A-level only)

Unit 3.2 Inorganic Chemistry

- 3.2.1 Periodicity
- 3.2.2 Group 2, the alkaline earth metals
- 3.2.3 Group 7(17), the halogens
- 3.2.4 Properties of Period 3 elements and their oxides (A-level only)
- 3.2.5 Transition metals (A-level only)
- 3.2.6 Reactions of ions in aqueous solution (A-level only)

3.3 Organic Chemistry

- 3.3.1 Introduction to organic chemistry
- 3.3.2 Alkanes
- 3.3.3 Halogenoalkanes
- 3.3.4 Alkenes
- 3.3.5 Alcohols
- 3.3.6 Organic analysis
- 3.3.7 Optical isomerism (A-level only)
- 3.3.8 Aldehydes and ketones (A-level only)
- 3.3.9 Carboxylic acids and derivatives (A-level only)
- 3.3.10 Aromatic chemistry (A-level only)
- 3.3.11 Amines (A-level only)
- 3.3.12 Polymers (A-level only)
- 3.3.13 Amino acids, proteins and DNA (A-level only)
- 3.3.14 Organic synthesis (A-level only)
- 3.3.15 Nuclear magnetic resonance spectroscopy (A-level only)
- 3.3.16 Chromatography (A-level only)

If you would like to read further into the specification you can do so using this link; <u>https://filestore.aqa.org.uk/resources/chemistry/specifications/AQA-7404-7405-SP-2015.PDF</u>.

Throughout the A-level course you will not only develop your knowledge and understanding of chemistry but will also develop your practical, literacy and mathematical skills. To reach the highest grades at AS and A-level chemistry, you should regularly engage in wider reading around the subject to extend your knowledge beyond the specification.

Book Recommendations

We would advise all students to purchase the practical chemistry book (£9.99). We would also recommend the course book we will be using below. A couple of copies are in the library to borrow as well as potentially buying second hand copies from the current Y13 or online.

AQA A Level Chemistry (2nd edition)

Authors: Ted Lister, Janet Renshaw Publisher: Oxford University Press (including Nelson Thornes) ISBN-13: 978-0-19-835182-5 Price: £42.00 Publication date: June 2015 - out now Digital version - out now Isbn - out now

Others

There is also an accompanying revision guide and a book on practical techniques:

ISBN 978-0-19-835184-9 (price £14.99)

ISBN 978-1-4718-8514-3 (£9.99)

• ISBN: 9781782944720

ISBN: 9781782942801

• The CGP books could be ordered through school if you speak with the science dep't or 6th form team.

Summer Tasks to Complete

These Chemistry bridging tasks are designed to help you to review the core principles that you learnt during your GCSE's and to prepare yourself for the first topic that will be taught at the beginning of year 12. You must bring this work to your first Chemistry lesson in September.

- 1. Check out mathematical requirements for the course at <u>https://www.aqa.org.uk/subjects/science/as-and-a-level/chemistry-7404-</u> 7405/mathematical-requirements-and-exemplifications
- 2. Complete the activities 1-8 below.
- Watch the video "Atom 1: The Clash of the Titans" <u>https://www.youtube.com/watch?v=Y-AiqCp7Vlc</u> and make notes on key scientists involved and their contribution to the development of current theories. Be prepared to discuss and share these ideas during the first week in September.
- 4. Revise key ideas on atomic structure, bonding and mole calculations and complete the tasks from the "pre-knowledge topics" below (topics 1-4).

Understanding and applying the correct terms are key for practical science. Much of the vocabulary you have used at GCSE for practical work will not change but some terms are dealt with in more detail at A-level so are more complex.

Activity 3 Scientific vocabulary: Errors

Link each term on the left to the correct definition on the right.

Understanding and using SI units

Every measurement has a size (e.g. 2.7) and a unit (e.g. metres or kilograms). Sometimes, there are different units available for the same type of measurement. For example, milligram, gram, kilogram and tonne are all units used for mass.

There is a standard system of units, called the SI units, which are used for most scientific purposes.

These units have all been defined by experiment so that the size of, say, a metre in the UK is the same as a metre in China.

There are seven SI base units, which are given in the table.

Physical quantity	Unit	Abbreviation
Mass	kilogram	kg
Length	metre	m
Time	second	S
Electric current	ampere	А
Temperature	kelvin	К
Amount of substance	mole	mol
luminous intensity	candela	cd

All other units can be derived from the SI base units. For example, area is measured in metres square (written as m^2) and speed is measured in metres per second (written as $m s^{-1}$: not that this is a change from GCSE, where it would be written as m/s).

Using prefixes and powers of ten

Very large and very small numbers can be complicated to work with if written out in full with their SI unit. For example, measuring the width of a hair or the distance from Manchester to London in metres (the SI unit for length) would give numbers with a lot of zeros before or after the decimal point, which would be difficult to work with.

So, we use prefixes that multiply or divide the numbers by different powers of ten to give numbers that are easier to work with. You will be familiar with the prefixes milli (meaning 1/1000), centi (1/100), and kilo (1×1000) from millimetres, centimetres and kilometres.

There is a wide range of prefixes. Most of the quantities in scientific contexts will be quoted using the prefixes that are multiples of 1000. For example, we would quote a distance of 33 000 m as 33 km.

The most common prefixes you will encounter are given in the table.

Prefix	Symbol	Power of 10	Multiplication factor		
Tera	Т	10 ¹²	1 000 000 000 000		
Giga	G	10 ⁹	1 000 000 000		
Mega	М	10 ⁶	1 000 000		
kilo	k	10 ³	1000		
deci	d	10 ⁻¹	0.1	1/10	
centi	с	10 ⁻²	0.01	1/100	
milli	m	10 ⁻³	0.001	1/1000	
micro	μ	10 ⁻⁶	0.000 001	1/1 000 000	
nano	n	10 ⁻⁹	0.000 000 001	1/1 000 000 000	
pico	р	10 ⁻¹²	0.000 000 000 001	1/1 000 000 000 000	
femto	f	10 ⁻¹⁵	0.000 000 000 000 001	1/1 000 000 000 000 000	

Activity 4 SI units and prefixes

- 1. What would be the most appropriate unit to use for the following measurements?
 - a. The mass of water in a test tube.
 - b. The volume of water in a burette.
 - c. The time taken for a solution to change colour.
 - d. The radius of a gold atom.
 - e. The number of particles e.g. atoms in a chemical.
 - f. The temperature of a liquid.
- 2. Re-write the following quantities using the correct SI units.
 - a. 0.5 litres
 - b. 5 minutes
 - c. 20 °C
 - d. 70 °F
 - e. 10 ml (millilitres)
 - f. 5.5 tonnes
 - g. 96.4 microlitres (µl)
- 3. Scientists have been developing the production of a new material through the reaction of two constituents.

Before going to commercial production, the scientists must give their data in the correct SI units.

a.	The flow rate of the critical chemical was reported as 240 grams per minute at a
	temperature of 20 °C.
	Re-write this flow rate using the correct SI units. Show your working.

Activity 5 Converting data

Re-write the following.

- 1. 0.1 metres in millimetres
- 2. 1 centimetre in millimetres
- 3. 104 micrograms in grams
- 4. 1.1202 kilometres in metres
- 5. 70 decilitres in millilitres
- 6. 70 decilitres in litres
- 7. 10 cm^3 in litres
- 8. 2140 pascals in kilopascals

The delta symbol (Δ)

The delta symbol (Δ) is used to mean 'change in'. You might not have seen this symbol before in your GCSE Chemistry course, although it is used in some equations in GCSE Physics.

Activity 6 Using the delta symbol

In exothermic and endothermic reactions there are energy changes.

The diagram below shows the reaction profile for the reaction between zinc and copper sulfate solution.

† 90 – 10	* 58 - 71	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
)3 Actin	l Lantha	2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	
ides	nides	(3) Scandium 21 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7	
		rela atom atom atom 178.5 178.5 178.5 178.5 178.5 178.5 178.5 178.5	
232.0 Th 90	140.1 58	Key name symbo symbo name ic (proton) (5) (5) (5) (5) (5) (5) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	
231.0 Pa protactinium 91	140.9 Pr praseodymium 59	number number for or of the sealor for molybdenum for of the sealor for the sealo	
238.0 uranium 92	144.2 Nd 60	Imanganese I	
neptunium 93	[145] Pm 61	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
[244] Pu plutonium 94	150.4 Sm samarium 62	102.9 10	
[243] Am americium 95	152.0 Eu 63	(10) (10) 58.7 58.7 Nickel 28 106.4 Pd 106.4 Pd 106.4 Pd 106.4 Pd 1105.1	
96 curium	157.3 Gd gadolinium 64	(11) (11) (11) (11) (11) (11) (11) (11)	
[247] BK berkelium 97	158.9 TD 65	(12) (12) (12) (12) (12) (12) (12) (12)	
californium 98	162.5 Dy dysprosium 66	(13) (13) (13) (13) (13) (13) (13) (13)	
[252] Es einsteinium 99	164.9 Ho holmium 67	(14) (14) (14) (14) (14) (14) (14) (14)	
100 [257]	167.3 erbium 68	(15) (15) (15) (15) (15) (15) (15) (15)	
[258] Md mendelevium 101	168.9 Tm 69	(16) (16) (16) (16) (16) (16) (16) (16)	
nobelium 102	173.0 Yb ytterbium 70	(17) 19.0 F F S S S S S S S S S S S S S S S S S	
[262] Lr lawrencium 103	175.0 Lu Iutetium 71	(18) (18) (18) (18) (18) (18) (18) (18)	

The Periodic Table of the Elements

Activity 7 Atoms

- 1. Give the atomic number of:
 - a. Osmium
 - b. Lead
 - c. Sodium
 - d. Chlorine
- 2. Give the relative atomic mass (A_r) of:
 - a. Helium
 - b. Francium
 - c. Barium
 - d. Oxygen

3. What is the number of neutrons in each of the following elements?

- a. Fluorine
- b. Beryllium
- c. Gold

The table below lists the formulae of some common ions.

Positive ions		Negative ions	
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br [_]
Ammonium	NH_4^+	Carbonate	CO3 ²⁻
Barium	Ba ²⁺	Chloride	Cl⁻
Calcium	Ca ²⁺	Fluoride	F [−]
Copper(II)	Cu ²⁺	Iodide	I ⁻
Hydrogen	H⁺	Hydroxide	OH⁻
Iron(II)	Fe ²⁺	Nitrate	NO₃ [−]
Iron(III)	Fe ³⁺	Oxide	02
Lead	Pb ²⁺	Sulfate	SO4 ²⁻
Lithium	Li⁺	Sulfide	S ²⁻
Magnesium	Mg ²⁺		
Potassium	K ⁺		
Silver	Ag ⁺		
Sodium	Na⁺		
Zinc	Zn ²⁺		

Use the table to state the formulae for the following ionic compounds.

- 1. Magnesium bromide
- 2. Barium oxide
- 3. Zinc chloride
- 4. Ammonium chloride
- 5. Ammonium carbonate
- 6. Aluminium bromide
- 7. Calcium nitrate
- 8. Iron (II) sulfate
- 9. Iron (III) sulfate

Pre-Knowledge Topics

<u>1 – Electronic structure, how electrons are arranged around the nucleus</u>

A periodic table can give you the proton / atomic number of an element, this also tells you how many electrons are in the *atom*.

You will have used the rule of electrons shell filling, where:

The first shell holds up to 2 electrons, the second up to 8, the third up to 8 and the fourth up to 18 (or you may have been told 8).

Atomic number =3, electrons = 3, arrangement 2 in the first shell and 1 in the

Li = 2,1

At **A level** you will learn that the electron structure is more complex than this, and can be used to explain a lot of the chemical properties of elements.

The 'shells' can be broken down into 'orbitals', which are given letters: 's' orbitals, 'p' orbitals and 'd' orbitals.

You can read about orbitals here:

http://www.chemguide.co.uk/atoms/properties/atomorbs.html#top

Now that you are familiar with s, p and d orbitals try these problems, write your answer in the format:

1s², 2s², 2p⁶ etc.

Q1.1 Write out the electron configuration of:

a) Ca b) Al c) S d) Cl e) Ar f) Fe g) V h) Ni i) Cu j) Zn k) As

Q1.2 Extension question, can you write out the electron arrangement of the following *ions*:

a) K^+ b) O^{2-} c) Zn^{2+} d) V^{5+} e) Co^{2+}

2 – Isotopes and mass

You will remember that an isotopes are elements that have differing numbers of neutrons. Hydrogen has 3 isotopes; H_1^1 H_1^2 H_1^3

Isotopes occur naturally, so in a sample of an element you will have a mixture of these isotopes. We can accurately measure the amount of an isotope using a **mass spectrometer**. You will need to understand what a mass spectrometer is and how it works at A level. You can read about a mass spectrometer here:

http://www.kore.co.uk/tutorial.htm

http://filestore.aqa.org.uk/resources/chemistry/AQA-7404-7405-TN-MASS-SPECTROMETRY.PDF

Q2.1 What must happen to the atoms before they are accelerated in the mass spectrometer?

Q2.2 Explain why the different isotopes travel at different speeds in a mass spectrometer.

A mass spectrum for the element chlorine will give a spectrum like this:

75% of the sample consist of chlorine-35, and 25% of the sample is chlorine-37.

Given a sample of naturally occurring chlorine ³/₄ of it will be Cl-35 and ¹/₄ of it is Cl-37. We can calculate what the **mean** mass of the sample will be:

If you look at a periodic table this is why chlorine has an atomic mass of 35.5.

http://www.avogadro.co.uk/definitions/ar.htm

An A level periodic table has the masses of elements recorded much more accurately than at GCSE. Most elements have isotopes and these have been recorded using mass spectrometers.

11	12	14	16	19
B	C	N	O	F
boron	carbon	nitrogen	oxygen	fluorine
5	6	7	8	9
27	28	31	32	35.5
Al	Si	P	S	C1
aluminium	silicon	phosphorus	sulfur	chlorine
13	14	15	16	17

10.9	12.0	14.0	16.0	10.0
10.0	12.0	14.0	10.0	13.0
В	C	N	Ο	F
5	6	7	8	9
boron	carbon	nitrogen	oxygen	fluorine
27.0	28.1	31.0	32.1	35.5
13 AI	₁₄ Si	15 P	16 S	
aluminium	silicon	phosphorus	sulphur	chlorine

Given the percentage of each isotope you can calculate the mean mass which is the accurate atomic mass for that element.

Q2.3 Use the percentages of each isotope to calculate the accurate atomic mass of the following elements.

- a) Antimony has 2 isotopes: 121 Sb 57.25% and 123 Sb 42.75%
- b) Gallium has 2 isotopes: ^{69}Ga 60.2% and ^{71}Ga 39.8%
- c) Silver has 2 isotopes: 107Ag 51.35% and ^{109}Ag 48.65%
- d) Strontium has **4** isotopes: ⁸⁴Sr 0.56%, ⁸⁶Sr 9.86%, ⁸⁷Sr 7.02% and ⁸⁸Sr 82.56%

3 - Measuring chemicals using relative mass and the mole

From this point on you need to be using an A level periodic table, not a GCSE one you can view one here:

https://secondaryscience4all.files.wordpress.com/2014/08/filestore_aqa_org_uk_subjects_aqa-2420-w-trb-ptds_pdf.png

Now that we have our chemical equations balanced, we need to be able to use them in order to work out masses of chemicals we need or we can produce.

The *mole* is the chemists equivalent of a dozen, atoms are so small that we cannot count them out individually, we weigh out chemicals.

For example: magnesium + sulfur \rightarrow magnesium sulfide

Mg + S → MgS

We can see that one atom of magnesium will react with one atom of sulfur, if we had to weigh out the atoms we need to know how heavy each atom is.

From the periodic table: Mg = 24.3 and S = 32.1

If I weigh out exactly 24.3g of magnesium this will be 1 mole of magnesium, if we counted how many atoms were present in this mass it would be a huge number (6.02 x 10^{23} !!!!), if I weigh out 32.1g of sulfur then I would have 1 mole of sulfur atoms.

So 24.3g of Mg will react precisely with 32.1g of sulfur, and will make 56.4g of magnesium sulfide.

Here is a comprehensive page on measuring moles, there are a number of descriptions, videos and practice problems.

You will find the first 6 tutorials of most use here, and problem sets 1 to 3.

http://www.chemteam.info/Mole/Mole.html

Q3.1 Answer the following questions on moles.

- a) How many moles of phosphorus pentoxide (P_4O_{10}) are in 85.2g?
- b) How many moles of potassium chlorate (KClO₃) in 73.56g?
- c) How many moles of water are in 249.6g of hydrated copper sulfate(VI) (CuSO₄.5H₂O)? For this one, you need to be aware the dot followed by 5H₂O means that the molecule comes with 5 water molecules so these have to be counted in as part of the molecules mass.
- d) What is the mass of 0.125 moles of tin sulfate (SnSO₄)?
- e) If I have 2.4g of magnesium, how many g of oxygen (O₂) will I need to react completely with the magnesium? $2Mg + O_2 \rightarrow 2MgO$

4 – Solutions and concentrations

In chemistry a lot of the reactions we carry out involve mixing solutions rather than solids, gases or liquids.

You will have used bottles of acids in science that have labels saying 'Hydrochloric acid 1M', this is a solution of hydrochloric acid where 1 mole of HCl, hydrogen chloride (a gas) has been dissolved in 1dm³ of water.

The dm³ is a cubic decimetre, it is actually 1 litre, but from this point on as an A level chemist you will use the dm³ as your volume measurement.

Q4

- a) What is the concentration (in moldm⁻³) of 9.53g of magnesium chloride (MgCl₂) dissolved in 100cm³ of water?
- b) What is the concentration (in moldm⁻³) of 13.248g of lead nitrate ($Pb(NO_3)_2$) dissolved in 2dm³ of water?
- c) If I add 100cm³ of 1.00 moldm⁻³ HCl to 1.9dm³ of water, what is the molarity of the new solution?
- d) What mass of silver is present in 100cm³ of 1moldm⁻³ silver nitrate (AgNO₃)?
- e) The Dead Sea, between Jordan and Israel, contains 0.0526 moldm⁻³ of Bromide ions (Br⁻), what mass of bromine is in 1dm³ of Dead Sea water?