A Level Induction Test (Non-calculator) Example Test

	Topic	Marks			Dr Frost Code
1	Expand and simplify 2 brackets	6	+	NS	299
2	Factorise quadratics	8	+	NS	362 / 364
3	Simplify Algebraic Fractions	4	+	NS	387 / 389
4 (a)	Solve equations involving fractions	3	+	NS	258
(b)(c)	Solve quadratics	6	+	NS	265
5	Indices rules	3	+	NS	394
6	Negative, zero and fractional indices	4	+	NS	158 / 298
7	Solve simultaneous equations	3	+	NS	276
8	Change the subject of a formula	7	+	NS	201 / 260 / 391
9	Solve a quadratic with exact values	3	+	NS	417
10	Simplify surds	5	+	NS	392 / 335 / 337
11	Sketch a trigonometric graph	2	+	NS	434
12	Sketch the graph:				
(a)	Linear in the form $y = mx + c$	3	+	NS	269
(b)	Linear in the form ax + by = q	3	+	NS	273e
(c)	Quadratic	3	+	NS	368

If
$$ax^2 + bx + c = 0$$
 then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Expand and simplify 1.

(a)
$$(2x-3)(2x-1)$$
 (2

$$(x-2)^2$$

(a)
$$(2x-3)(2x-1)$$
 (b) $(x-2)^2$ (c) $4x(x+3)-2x(5x-1)$ (2)

2. Factorise

(a)
$$14x^2 + 21x$$
 (2)

(b)
$$9v^2 - 49$$
 (2)

(a)
$$14x^2 + 21x$$
 (2) (b) $9y^2 - 49$ (2) (c) $x^2 + 5x - 36$ (2) (d) $6t^2 + t - 2$

(2)

3. Simplify

(a)
$$\frac{18x^6y}{24x^5y^2}$$
 (2)

(b)
$$\frac{3x-1}{3} - \frac{2x+1}{4}$$
 (2)

4. Solve the following equations

(a)
$$\frac{h+2}{2} + \frac{h-2}{2} = 7$$

(3) (b)
$$4x^2 - 9x = 0$$
 (3) (c) $p^2 + p = 12$ (3)

(c)
$$p^2 + p = 12$$
 (3)

5. Write each of the following as single powers of x and / y

(a)
$$\frac{1}{2x^3}$$

(b)
$$(3x^4)^3$$

(a)
$$\frac{1}{2x^3}$$
 (1) (b) $(3x^4)^3$ (1) (c) $\frac{x^{-2}}{x^5}$ (1)

Work out the values of the following, giving your answers as fractions 6.

(b)
$$\left(\frac{2}{3}\right)^6$$

(a)
$$2^{-5}$$
 (1) (b) $\left(\frac{2}{3}\right)^0$ (1) (c) $\left(\frac{64}{27}\right)^{-\frac{2}{3}}$

7. Solve the simultaneous equations

$$6x + 4y = 10$$

$$5x + 6y = 11$$
 (3)

8. Rearrange the following equations to make x the subject

(a)
$$s = u^2 + xt$$

(2) (b)
$$V = \frac{2}{3}\pi x^2$$
 (2) (c) $y = \frac{2x+1}{x-4}$

(c)
$$y = \frac{2x+1}{x-4}$$

Solve $5x^2 + 10x + 2 = 0$ giving your solutions in surd form (3) 9.

10. Simplify

(a)
$$\frac{\sqrt{15}}{\sqrt{3}}$$
 (1)

(a)
$$\frac{\sqrt{15}}{\sqrt{3}}$$
 (1) (b) $\sqrt{15} \times \sqrt{15} \times \sqrt{3}$ (2) (c) $(\sqrt{5} + \sqrt{3})^2$ (2)

(c)
$$(\sqrt{5} + \sqrt{3})^2$$

11. Sketch the graph of
$$y = \sin x$$
 for $0 \le x \le 360^{\circ}$.

(2)

12. Sketch (do not plot) these graphs showing any points of intersection with the x and y axes.

(a)
$$y = 3x + 4$$

(b)
$$2x + 3y = 12$$

(a)
$$y = 3x + 4$$
 (3) (b) $2x + 3y = 12$ (3) (c) $y = x^2 + 5x + 4$ (3)