#### science 1) Communities

biology

cology

Ω

ш

S

U

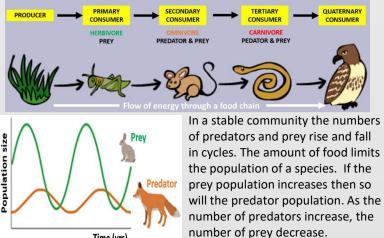
J

chaseterro acaderr

- **Species** group of similar organisms reproducing to make fertile offspring
  - Habitat where an organism lives
  - **Population** all organisms of a species in a habitat **Community** – all the populations of different species in a habitat Ecosystem – the interaction of a community (biotic) with the non-living (abiotic) parts of their environment.
  - Interdependence species depend on other species within a community for food, shelter, pollination, seed dispersal etc. If one species is removed it can affect the whole community.
  - A stable community all the species and environmental factors are in balance, so population sizes remain fairly constant.

|  | <b>Abiotic factors</b> - Non-living factors that affect the ecosystem             | <b>Biotic factors</b> - Living factors that affect the ecosystem |
|--|-----------------------------------------------------------------------------------|------------------------------------------------------------------|
|  | light, CO <sub>2</sub> , temperature, O <sub>2</sub> ,<br>moisture, soil pH, wind | Competition, food, parasites, predators, disease                 |
|  | Distribution of organisms: where organisms are found in a habitat                 |                                                                  |

at a particular time. It is affected by abiotic (eg. temperature) and biotic (eg. food availability) factors.


2) Adaptations: Organisms have features (adaptations) that enable them to survive in the conditions in which they normally live. **Structural adaptations -** the features of an organism's body structure e.g. shape, size or colour.

Behavioural adaptations - how an organism behaves e.g. some species migrate to warmer climates during winter months. Functional adaptations - internal processes of an organism e.g. desert animals produce little sweat and small amounts of urine to conserve water.

Some organisms live in environments that are very extreme, such as at high temperature, pressure, or salt concentration. They are called extremophiles (eg. bacteria living in deep sea vents)

3) Biodiversity: variety of all the different species of organisms on Earth or within an ecosystem. High biodiversity increases the stability of ecosystems. The future of the human species on Earth relies on us maintaining a high level of biodiversity. Many human activities are reducing biodiversity ⊗

4) Organisation of an Ecosystem: Food chains: plants are the producers of biomass (living tissue) on Earth. All food chains begin with a producer which synthesise glucose. Primary consumers eat producers, which in turn are eaten by secondary consumers and then tertiary consumers. Consumers that kill and eat other animals are predators, and those eaten are prey.



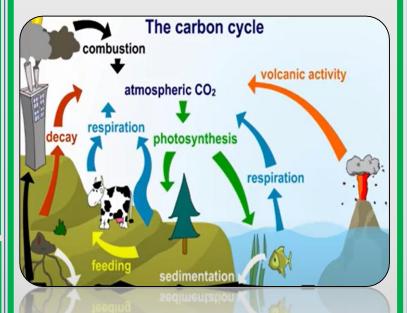
5) PRACTICAL -: measure the population size of a common species in a habitat. Use sampling techniques to investigate the effect of a factor on the distribution of this species

Quadrats: to estimate population sizes - good for field sampling

- 1. Grid out the area
- Use random number generator to place quadrat 2.
- 3. Use an field ID guide to identify species of plant
- 4. Count number of organisms /% coverage

Time (yrs)

- Repeat & calculate mean number of each species per quadrat 5.
- Calculate area of habitat and how many quadrats would fit in it 6.
- Multiply each mean by the total quadrat area 7.


**Transect:** to see changes in distribution - good for shorelines/woods

- Lay tape along the length of the area 1.
- Place quadrat at regular intervals eg. Every 1m 2.
- 3. Use an field ID guide to identify species of plant
- 4. Count number of organisms /% coverage
- 5. Move the transect along and make repeats to **calculate a mean**

### 6) How materials are Cycled:

All materials in the living world are recycled to provide the building blocks for future organisms.

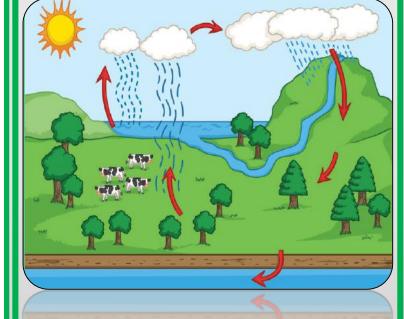
**Carbon cycle:** returns carbon from organisms to the atmosphere as carbon dioxide to be used by plants in photosynthesis.



Microorganisms are responsible for cycling materials through an ecosystem by returning carbon to the atmosphere as carbon dioxide and mineral ions to the soil.

| 1 | Processing data |                                                                    |  |
|---|-----------------|--------------------------------------------------------------------|--|
|   | Median          | Middle value in a sample.                                          |  |
| • | Mode            | Most occurring value in a sample.                                  |  |
|   | Mean            | The sum of all the value in a sample divided by the sample number. |  |




#### 6) Continued.. How materials are Cycled:



science

All materials in the living world are recycled to provide the building blocks for future organisms.

Water cycle: provides fresh water for plants and animals on land before draining into the seas. Water is continuously evaporated and precipitated.



**Evaporation** occurs when heat energy from the surroundings (or a heat source) is transferred to water particles as kinetic energy. The particles begin to move more rapidly and can turn from a liquid into a gas.

When moving particles transfer kinetic energy to the surroundings, the particles begin to move more slowly and can turn from a gas into a liquid. This is condensation.

Precipitation occurs when rain, snow, sleet, or hail falls to (or condenses on) the ground.

Transpiration is the process by which water is carried through plants from roots to the stomata on the underside of leaves and it evaporates into the surroundings.

7) Maintaining Biodiversity: Human activity can have a positive impact on biodiversity. Biodiversity is the variety of all the different species of organisms on earth, or within an ecosystem. A great biodiversity ensures the stability of ecosystems by reducing the dependence of one species on another for food, shelter and the maintenance of the physical environment.

Breeding programmes for endangered species.

Protection and regeneration of rare habitats.

Reintroduction of field margins and hedgerows in agricultural areas where farmers grow only one type of crop.

Reduction of deforestation and CO<sub>2</sub> emissions by some governments.

Recycling resources rather than dumping waste in landfill.

**<u>8) Waste Management:</u>** Rapid growth in the human population and an increase in the standard of living mean that more resources are used and more waste and pollution is produced:

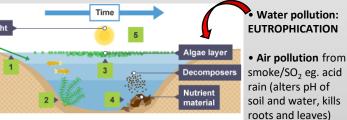
• Land pollution

chemicals .All

biodiversity.

by building,

amount of land


from landfill/toxic

pollution reduces

Humans reduce the

available for other

animals and plants



- Nutrient load up: excessive nutrients from fertilisers are flushed from the land into rivers or lakes by rainwater.
- Plants flourish: these pollutants cause aquatic plant growth of algae, duckweed and other plants.
- Algae blooms, oxygen is depleted: algae blooms prevent sunlight reaching other plants. The plants die and oxygen in the water is depleted.
- Decomposition further depletes oxygen: dead plants are broken down by bacteria decomposers, using up even more oxygen in the water.

Death of the ecosystem: oxygen levels reach a point where no guarrying & life is possible. Fish and other organisms die. farming.



# Land use

For Building and quarrying.

Farming for animals and food crops.

Humans reduce the amount of land and habitats available for other plants, animals and microorganisms.

#### Dumping waste.

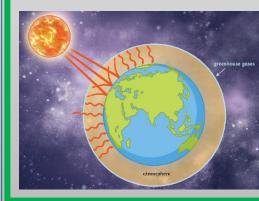
Destruction of peat bogs to produce cheap compost for gardeners/farmers to increase food production. <u>The decay or</u> <u>burning of peat release CO<sub>2</sub></u> into the atmosphere

Large scale deforestation

Provide land for cattle and rice fields, grow crops for biofuels.



# 10 Global Warming:


Levels of  $CO_2$  and methane in the atmosphere are increasing.

Some of the biological consequences of global warming are:

1) Decreased land availability from sea level rise

2) Temperature rise damages delicate habitats

3) Extreme weather events harm populations of plants and animals.



Scientific consensus about global warming and climate change is based on systematic reviews of thousands of **peer reviewed** publications.

chaseterro acaderr



Only)

**Biology** 

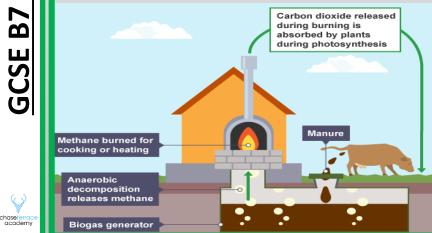
cology (Single

111

11) Decomposition: puts nitrates back into the soil and carbon dioxide back into the atmosphere.

Conditions for decay:

Temperature: Decay is controlled by enzymes so too cold = too slow, too hot = denatured.


Moisture: Makes it easier for microorganisms to digest food and prevents drying out.

**Oxygen:** For aerobic respiration – growth, reproduce etc. Aerobic respiration results in an increase in temperature in a compost heap

- **Compost Heaps** decay releases nutrients from dead plants and animals to make fertile soil.
  - Air holes let oxygen in, regulate temperature. Warmth - generated by respiring microorganisms.
  - Finely shredded waste increases surface area.

Decomposers (fungi and bacteria) break down dead matter by secreting enzymes into the environment. Small soluble food molecules then diffuse into the microorganism.

12) Biogas: anaerobic respiration in bacteria can produce methane - flammable gas (fuel) Biogas can be produced on a small scale in a biogas generator. The carbohydrate-containing materials are fed in, and a range of bacteria anaerobically ferment the carbohydrate into biogas. The remaining solids settle to the base of the digester and can be run off to be used as fertiliser for the land. The optimum temperature for biogas production is between 32°C and 35°C. Cooler Countries - slow respiration rate - bury generator with thick walls. Warmer Countries - denatures enzymes - bury generator so ground keeps it cool during the day.



| 13) Environmental Change: |                                                                                                                                                                        |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Seasonal<br>Changes       | Daylight, amount of rainfall, temperature all change with the seasons. Animals migrate.                                                                                |  |  |
| Geographical<br>Changes   | Changes to soil (structure and pH), altitude,<br>saltiness of water. Organisms have<br>adaptations to survive.                                                         |  |  |
| Human<br>Interaction      | <b>Negative</b> : Global warming, acid rain, pollution<br><b>Positive</b> : Maintaining rainforests, reducing<br>pollution, conservation of hedgerows and<br>woodlands |  |  |
| Living Factors            | New predator, diseases, new competitors                                                                                                                                |  |  |

14) Biomass: mass of organism (no water) Trophic Levels: stages in a food chain eg. producer, primary consumer Pyramid of Biomass: shows the proportion of organisms at each trophic level. Rules for drawing a good one:

Producer always at the bottom.

- They always have a pyramid shape
- Biomass is lost from the food chain at each level because:
- Not all organisms or parts are eaten e.g. roots, bones.
- Faeces contain biomass (available to decomposers for decay)
- Most biomass consumed is used for respiration not growth
- Food chains are short because there is not enough biomass left

Hawk Shrews

change

Ч

oť

Rate 0.015

0.060

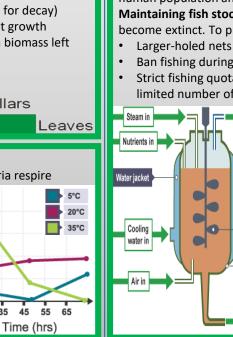
0.045

0.030

0.000

25 35

Caterpillars


# 15) PRACTICAL – RATE OF DECAY

As milk decays its pH reduces because the milk bacteria respire

converting lactose sugar to lactic acid.

- 3 beakers of milk
- Measure the pH
- Place at 3 different temperatures
- Measure the pH at 24, 48 & 72 hrs Calculate the rate of change of pH
- Faster drop in pH = faster decay

rate of change = <u>change</u> in value change in time



**16) Food Security**: Having enough food for the population Biological factors threatening food security:

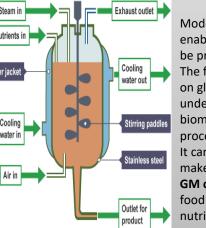
• the increasing birth rate has threatened food security in some countries

• changing diets in developed countries means scarce food resources are transported around the world

- new pests and pathogens that affect farming
- environmental changes that affect food production, such as widespread famine occurring in some countries if rains fail
- the cost of agricultural inputs

 conflicts that have arisen in some parts of the world which affect the availability of water or food.

# To make food production efficient:


- Shorter food chains so less biomass lost
- Limit movement of farm animals = less respiration = more growth
- Warmer temperature less respiration more biomass
- Fish bred in cages on high protein diets

Downsides: Ethical concerns over animal cruelty and welfare, Cost for lighting and heating, disease spreads in intensive farms

17) Sustainable = producing foods in ways that supply the whole human population and can continue for years.

Maintaining fish stocks: breeding must continue or species may become extinct. To prevent overfishing:

- Larger-holed nets to only catch the bigger, older fish
- Ban fishing during breeding season
- Strict fishing quotas to make sure some fishermen only bring in a limited number of specific types of fish.



Modern biotechnology techniques enable large quantities of food to be produced.

The fungus Fusarium (grows fast on glucose syrup) in a fermenter under aerobic conditions. Fungal biomass is harvested, purified and processed to make mycoprotein. It can be shaped and flavoured to make a low fat, protein rich food. GM crops could provide more food or food with improved nutritional value eg. golden rice.