<u>1) Acids</u>

scienc

chemist

ses

Ba

Q

cids

4

 $\overline{}$

Acids are chemicals that dissolve in water to give **hydrogen ions (H**⁺).

Acids usually taste sour e.g. lemon juice (citric acid) and vinegar (ethanoic acid). These are both weak acids.

Examples of strong acids include hydrochloric acid, sulfuric acid and nitric acid.

<u>2) Bases</u>

Bases are **substances that neutralise acids**. Many bases are insoluble (don't dissolve in water) such as metal oxides and metal carbonates.

Bases that are **soluble** in water (dissolve) are called <u>alkalis</u>. Alkalis are substances that dissolve in water to give **hydroxide ions (OH**⁻).

Bases usually taste bitter e.g. baking powder. When alkalis get on your skin they feel soapy.

Strong bases, such as sodium hydroxide and ammonia, are found in household cleaning products.

3) Hazard Symbols

Dilute acids and alkalis are moderate hazards – they can irritate your skin.

Concentrated acids and alkalis are **corrosive** – they can destroy skin and surfaces.

4) Indicators

Indicators are substances that **change colour** when added to acids or alkalis. A substance that is neither acidic or alkaline is **neutral**.

Examples of indicators:

Litmus paper – turns red in acids and blue in alkalis

 Universal indicator – has many different colours and shows us how strong or weak the acid/alkali is.

5) The pH Scale

The **strength of an acid or a base** is measured using the pH scale which runs from **pH 0 – pH 14**.

- Acids have a pH lower than 7
- Neutral substances have a pH of 7
- Bases have a pH higher than 7

red orange yellow green blue indigo purple

6) Neutralisation

When a **base** and **acid** are **mixed together** they react and make a **neutral substance** called a **salt and water**.

The general equations are:

Acid + Base → Salt + Water

Acid + Carbonate → Salt + Water + Carbon dioxide

7) Naming Salts

Salts are named from the acid and the base they are made from.

- The first part of the name is the name of the metal inside the base (or just ammonia)
- The second part of the name is taken from the acid
 - Hydrochloric acid \rightarrow chloride
 - Nitric acid \rightarrow nitrate
 - Sulfuric acid → sulfate

8) Neutralisation Equations Acid + Base → Salt + Water

<u>hydrochloric acid</u> + **sodium hydroxide** \rightarrow *sodium chloride* + water <u>sulfuric acid</u> + **ammonia** \rightarrow *ammonium sulfate* + water

<u>Acid</u> + Carbonate → Salt + Water + Carbon dioxide

 $\underbrace{\textit{nitric acid}}_{+} \textbf{ calcium carbonate} \rightarrow \textit{calcium nitrate} + \textit{water} + \textit{carbon} \\ \textit{dioxide}$

9) Indigestion Remedies

Indigestion is caused when there is **too much acid** made our stomach. Indigestion **remedies contain a base** to **neutralise the excess acid**.

E.g. Gaviscon, Rennies, Antacid tablets 롣

Investigation Keywords:

- Independent variable what you change e.g. type of indigestion remedy
- Dependent variable what you measure e.g. number of spatulas of remedy needed
- Control variable what you keep the same
 e.g. volume of acid, concentration of acid, mass of
 remedy on each spatula

Y7 Reactions

