science Definitions 1. **Energy system** – when an object changes there is a change in physics the energy store **Kinetic energy** - Energy stored in a moving object Elastic potential energy - Energy stored in a stretched or compressed object Gravitational potential energy - Energy stored in an object due to its mass and position in a gravitational field **Conduction** - Heat energy transfer through solids **Convection** - Heat energy transfer through fluids (liquids and gases) **Radiation** - Heat energy transfer through a vacuum by waves Specific heat capacity - The amount of energy required to raise 1kg of material by 1°C Energy Thermal insulator - Material that reduces the transfer of heat energy **Power** - The rate that energy is transferred OR the rate that work is done Work done - When a force causes an object to move a distance, energy is transferred σ Efficiency - How well a device transfers input energy into output energy Yeal Dissipation - The transfer of input energy to the surroundings 2. Prefixes

<u>Name</u>	Operation	Standard form
Micro (μ)	1/1000,000 th	× 10 ⁻⁶
Milli (m)	1/1000 th	× 10 ⁻³
Kilo (k)	1000x bigger	× 10 ³
Mega (M)	1 000 000x bigger	× 10 ⁶
Giga (G)	1 000 000 000x bigger	× 10 ⁹

5. Law of conservation of energy:

chaseterrac academy Energy can be transferred usefully, stored or dissipated, but cannot be created or destroyed

3. Energy equations

$E_{k} = \frac{1}{2}mv^{2}$ Kinetic energy (J) = ½ x mass (kg) x velocity ² (m/s) $E_{p} = mgh$ GPE (J) = mass (kg) x gravitational field (N/kg) x height (m) Efficiency = <u>Useful Output</u> Total Input									
					W = F x s Work done (J) = force (N) x distance (m)				
					P = W/t = E/t Power (W) = <u>Work done (J)</u> Time taken (s) Time taken (s)				
•	inte taken (5) Thire	lakeli (S)							
<u>4. Units</u>									
	Unit	Unit symbol							
<u>4. Units</u>									
<u>4. Units</u> Quantity	Unit	Unit symbol							
4. Units Quantity Energy/Work	Unit Joules	Unit symbol							
4. Units Quantity Energy/Work Mass	Unit Joules Kilograms	Unit symbol J kg							
4. Units QuantityEnergy/WorkMassForce	Unit Joules Kilograms Newtons	Unit symbol J kg N							
4. Units Quantity Energy/Work Mass Force Speed	Unit Joules Kilograms Newtons Metres per second	Unit symbol J kg N m/s							
Quantity Energy/WorkMassForceSpeedPowerGravitationalfieldstrength	Unit Joules Kilograms Newtons Metres per second Watts Newtons per kilogram	Unit symbol J kg N m/s W N/kg							
Quantity QuantityEnergy/WorkMassForceSpeedPowerGravitational	Unit Joules Kilograms Newtons Metres per second Watts	Unit symbol J kg N m/s W							

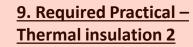
6. Insulation

Unwanted energy transfers can be reduced by lubrication and thermal insulation.

The higher the thermal conductivity of a material the higher the rate of energy transfer by conduction across the material. Examples of household insulation:

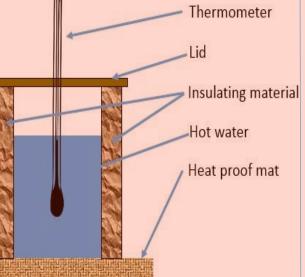
- Roof and cavity wall insulation
- Double glazed windows
- Carpets/curtains
- Draught excluders

)	7. Energy resources Earth's energy resources are used for transport, electricity generation & heating. A renewable energy resource is one that can be replenished as it is used.			
	Energy	Disadvantages	Advantages	
_	resource			
	Wind	Not reliable, visual pollution,	No air pollution,	
		noisy, damage to bird life.	free once installed	
	Solar	Not reliable as not always	No air pollution,	
		sunny, initial cost high.	free once installed	
- I	Hydroelectric	Damage to habitat when	No fuel costs,	
		valleys are flooded, don't	reliable, good for	
		work in drought areas.	quick high demand,	
			no air pollution	
	Geothermal	Only able to use in volcanic	No air pollution, no	
		areas – heat from Earth	fuel costs	
		drives a turbine. Not good		
		for large scale		
	Biomass	Air pollution: CO ₂ –	Reliable, gets rid of	
		greenhouse gas, visual	landfill.	
		pollution		
	Tidal	Damage to water habitats &	Reliable – can	
		fish, visual pollution,	predict tides, no air	
		expensive to install	pollution, no fuel	
n			costs	
	Wave	Initial cost high, damage fish,	No fuel costs, no air	
	Nuelesz	visual pollution, not reliable,	pollution	
	Nuclear	High decommissioning costs,	No air pollution,	
		dangerous, water pollution	reliable, generate	
			large amounts of	
	Cool/oil and	Will run out one dour oir	energy.	
>	Coal/oil and	Will run out one day, air	Reliable, easy to	
	gas	pollution: CO ₂ – greenhouse	transport	
		gas.		


8. Energy Stores				
Energy store	Description	Examples		
Magnetic	The energy stored when repelling poles have been pushed closer together or when attracting poles have been pulled further apart.	Fridge magnets, compasses, maglev trains which use magnetic levitation.		
Internal (thermal)	The total kinetic and potential energy of the particles in an object, in most cases this is the vibrations - also known as the kinetic energy - of particles. In hotter objects, the particles have more internal energy and vibrate faster.	hergy of the particles in an oject, in most cases this is e vibrations - also known as e kinetic energy - of articles. In hotter objects, e particles have more ternal energy and vibrate		
Chemical	The energy stored in chemical bonds, such as those between molecules.	Foods, muscles, electrical cells. Runners, buses, comets. Thunderclouds, Van De Graaff generators. Drawn catapults, compressed springs, inflated balloons.		
Kinetic	The energy of a moving object.			
Electrostatic	The energy stored when repelling charges have been moved closer together or when attracting charges have been pulled further apart.			
Elastic potential	The energy stored when an object is stretched or squashed.			
Gravitational potential	The energy of an object at height.	Aeroplanes, kites, mugs on a table.		
Nuclear	The energy stored in the nucleus of an atom.	Uranium nuclear power, nuclear reactors.		

SINGLE PHYSICS ONLY

8. Required Practical – Thermal insulation 1


Test 1 – investigate the effectiveness of different materials as thermal insulators.

- Independent = type of material
- Dependent = rate of water cooling •
- Controls = time, thickness of material, volume of water

Test 2 – investigate the factors that may affect the thermal insulation of a material.

- Independent = thickness • of material
- Dependent = rate of water . cooling
- Controls = time, same • material, volume of water

