# 

# 1) Energy Stores

Energy is defined as 'the ability to do work' Energy is measured in **Joules** and can be stored. There are 8 different stores of energy:

- 1. Heat (thermal) e.g. human bodies, hot drinks
- 2. Chemical e.g. food, batteries, petrol
- 3. Kinetic (movement) e.g. runners, motors
- **4. Gravitational potential** e.g. aeroplanes, kites
- **5. Electrostatic** e.g. thunder clouds
- 6. Elastic potential (strain) e.g. elastic bands, compressed springs
- 7. Nuclear e.g. uranium nuclear reactors
- **8. Magnetic** e.g. fridge magnets, compasses

#### 2) Energy Transfers

Energy can remain in the same store for millions of years or sometimes just for a fraction of a second. Energy cannot be created or destroyed. It can only be transferred from one store to another.

Energy is transferred by one of the following methods:

- Mechanically a force moving an object
- **Electrically** by moving charges
- Radiation by light or sound
- **Heating** energy moving from hot to cold places



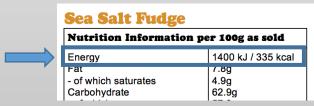
E.g. chemical energy stored in the battery is transferred electrically by moving charges and then by radiation of light.

### 3) Sankey Diagrams

Some energy transfers are not always useful. A lamp also transfers heat energy into the surroundings. This is called waste energy.

Energy is often be **dissipated** to the surroundings.

Sankey diagrams show how all of the energy in a system is transferred into different stores. They start off as one arrow that splits into two or more points.




The width of each arrow represents the amount of energy.

#### 4) Energy in Food

Food is a store of **chemical energy**.

Labels on packets of food show how much energy is available from food.



Energy in food is measured in calories (kcal) and the scientific unit of joules (J). A lot of energy is available from most foods, so food labels usually show kJ (kilojoules) instead of J.

1 kJ = 1000 J

# 5) Kinetic Energy

Anything that moves has kinetic energy. The faster an objects moves the more kinetic energy it has

#### 6) Gravitational Potential Energy

Objects at a height have gravitational potential energy. As the fall (like a sky diver) the energy in their gravitational potential energy store is transferred to their kinetic energy store.

#### 7) Elastic Potential Energy

Elastic materials such as rubber can be squashed or stretched. They will return to their original shape because of their elastic potential energy store.

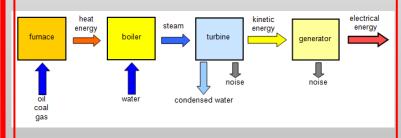
# 8) Investigation Keywords

**Independent** variable – what you **change** Dependent variable – what you measure Control variables – what you keep the same



#### 1) Renewable and Non renewable

- Energy resources can be defined as renewable or non-renewable.
- Non-renewable resources are a resource that can't be replaced and can be used up
- Renewable can be replaced and won't run out


# 2) Non-renewable energy sources

- Fossil fuels (coal, oil and gas) are nonrenewable energy sources.
- These are the main resources used to generate electricity.
- Nuclear power is also non-renewable.

### 3) How electricity is generated

Fossil fuels are burned to heat water to turn it into steam.

The steam is used to drive a turbine (moving blades like a water wheel) which is then used to power a generator (which generates the electricity.



# 4) Advantages and disadvantages of different energy sources

| Energy resource     | Disadvantages                                                                                   | Advantages                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Wind                | Needs wind, visual pollution, noisy, damage to bird life.                                       | No air pollution, free once installed                                          |
| Solar               | Not always sunny, initial cost high.                                                            | No air pollution, free once installed                                          |
| Hydroelectric       | Damage to habitat when valleys are flooded, don't work in drought areas.                        | No fuel costs,<br>reliable, good for<br>quick high demand,<br>no air pollution |
| Geothermal          | Only able to use in volcanic areas – heat from Earth drives a turbine. Not good for large scale | No air pollution, no fuel costs                                                |
| Biomass             | Air pollution: CO <sub>2</sub> – greenhouse gas, visual pollution                               | Reliable, gets rid of landfill.                                                |
| Tidal               | Damage to water habitats & fish, visual pollution, expensive to install                         | Reliable – can<br>predict tides, no air<br>pollution, no fuel<br>costs         |
| Wave                | Initial cost high,<br>damage fish, visual<br>pollution, not reliable,                           | No fuel costs, no air pollution                                                |
| Nuclear             | High decommissioning costs, dangerous, water pollution                                          | No air pollution, reliable, generate large amounts of energy.                  |
| Coal/oil and<br>gas | Will run out one day, air pollution: CO <sub>2</sub> – greenhouse gas.                          | Reliable, easy to transport                                                    |

#### 5) Power

Power is a measurement of how quickly energy is transferred from one store to another

Power is measured in Watts (W)

Energy is measured in **Joules (J)** 

Time is measured in **Seconds (s)** 

Power can be calculated using the equation

$$Power = \frac{Energy}{Time}$$

#### 6) Paying for Electricity

To calculate the cost of using our electricity we need to know

- The power rating of the device being used in kilowatt (kW)
- Cost of the electricity in pence (p)
- Time device is used for in hours (h)

The cost is then calculated using the equation:

### Total Cost = Power x time x price per kWh

e.g. A kettle with a power rating of **3 kW** is used for **1.5 h** a day. The electricity company charges **14p** per kWh. Energy transferred in kettle = 3 kW x 1.5 h = 4.5 kWh

Cost of energy = 4.5 kWh x 14 = 63p = £0.63

