

1. Definitions

- **Energy system** when an object changes there is a change in the energy store
- Kinetic energy Energy stored in a moving object
- Elastic potential energy Energy stored in a stretched or compressed object
- **Gravitational potential energy** Energy stored in an object due to its mass and position in a gravitational field
- Conduction Heat energy transfer through solids
- Convection Heat energy transfer through fluids (liquids and gases)
- Radiation Heat energy transfer through a vacuum by waves
- Specific heat capacity The amount of energy required to raise 1kg of material by 1°C
- Thermal insulator Material that reduces the transfer of heat energy
- **Power** The rate that energy is transferred OR the rate that work is done
- Work done When a force causes an object to move a distance, energy is transferred
- **Efficiency** How well a device transfers input energy into output energy
- **Dissipation** The transfer of input energy to the surroundings

2. Prefixes

<u>Name</u>	<u>Operation</u>	Standard form
Micro (μ)	1/1000,000 th	× 10 ⁻⁶
Milli (m)	1/1000 th	× 10 ⁻³
Kilo (k)	1000x bigger	× 10 ³
Mega (M)	1 000 000x bigger	× 10 ⁶
Giga (G)	1 000 000 000x bigger	× 10 ⁹

5. Law of conservation of energy:

Energy can be transferred usefully, stored or dissipated, but cannot be created or destroyed

3. Energy equations

$$E_k = \frac{1}{2} mv^2$$

Kinetic energy (J) = $\frac{1}{2}$ x mass (kg) x velocity² (m/s)

$$E_p = mgh$$

GPE (J) = mass (kg) x gravitational field (N/kg) x height (m)

$$W = F x s$$

Work done (J) = force (N) x distance (m)

$$P = W/t = E/t$$

Power (W) = Work done (J) = Energy used (J) Time taken (s) Time taken (s)

4. Units

Quantity	Unit	Unit symbol
Energy/Work	Joules	J
Mass	Kilograms	kg
Force	Newtons	N
Speed	Metres per second	m/s
Power	Watts	W
Gravitational	Newtons per kilogram	N/kg
fieldstrength		
Specificheat	Joules per kilogram	J/kg°C
capacity	degree Celsius	

6. Insulation

Unwanted energy transfers can be reduced by lubrication and thermal insulation.

The higher the thermal conductivity of a material the higher the rate of energy transfer by conduction across the material. Examples of household insulation:

- Roof and cavity wall insulation
- Double glazed windows
- Carpets/curtains
- Draught excluders

7. Energy resources

Earth's energy resources are used for transport, electricity generation & heating. A renewable energy resource is one that can be **replenished** as it is used.

Energy	Disadvantages	Advantages
resource		
Wind	Not reliable, visual pollution,	No air pollution,
	noisy, damage to bird life.	free once installed
Solar	Not reliable as not always	No air pollution,
	sunny, initial cost high.	free once installed
Hydroelectric	Damage to habitat when	No fuel costs,
	valleys are flooded, don't	reliable, good for
	work in drought areas.	quick high demand,
		no air pollution
Geothermal	Only able to use in volcanic	No air pollution, no
	areas – heat from Earth	fuel costs
	drives a turbine. Not good	
	for large scale	
Biomass	Air pollution: CO ₂ –	Reliable, gets rid of
	greenhouse gas, visual	landfill.
	pollution	
Tidal	Damage to water habitats &	Reliable – can
	fish, visual pollution,	predict tides, no air
	expensive to install	pollution, no fuel
		costs
Wave	Initial cost high, damage fish,	No fuel costs, no air
	visual pollution, not reliable,	pollution
Nuclear	High decommissioning costs,	No air pollution,
	dangerous, water pollution	reliable, generate
		large amounts of
		energy.
Coal/oil and	Will run out one day, air	Reliable, easy to
gas	pollution: CO ₂ – greenhouse	transport
	gas.	

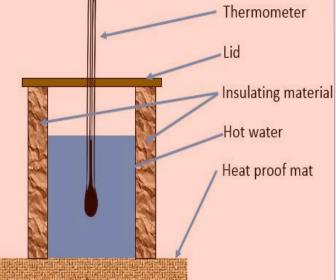
Ū

science

8. Energy Stores					
Energy store	Description	Examples			
Internal (thermal)	The total kinetic and potential energy of the particles in an object, in most cases this is the vibrations - also known as the kinetic energy - of particles. In hotter objects, the particles have more internal energy and vibrate faster.	Human bodies, hot coffees, stoves or hobs. Ice particles vibrate slower, but still have energy.			
Chemical	The energy stored in chemical bonds, such as those between molecules.	Foods, muscles, electrical cells.			
Kinetic	The energy of a moving object.	Runners, buses, comets.			
Elastic potential	The energy stored when an object is stretched or squashed.	Drawn catapults, compressed springs, inflated balloons.			
Gravitational potential	The energy of an object at height.	Aeroplanes, kites, mugs on a table.			

SINGLE PHYSICS ONLY

8. Required Practical - Thermal insulation 1


Test 1 – investigate the effectiveness of different materials as thermal insulators.

- Independent = type of material
- Dependent = rate of water cooling
- Controls = time, thickness of material, volume of water

9. Required Practical -**Thermal insulation 2**

Test 2 – investigate the factors that may affect the thermal insulation of a material.

- Independent = thickness of material
- Dependent = rate of water cooling
- Controls = time, same material, volume of water

