

1. Microorganisms and disease science

Microorganism – bacteria, virus, fungus or protist

Pathogen – microorganism that causes a disease

Bacteria – microorganisms that reproduce inside the host and release toxins that cause illness

Virus – invade host cells, reproduce and burst cells causing damage to the cell and tissues

Communicable disease – caused by a pathogen and spread from person to person

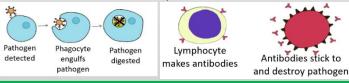
2. Modes of transmission				
Transmission	Examples			
Direct contact	Sexual contact or shaking hands.			
Water-borne	Dirty water can transmit disease eg. cholera			
IΔIr-horne	Coughing and sneezing can spray thousands of tiny droplets into the air			
lFood-borne	Undercooked or reheated food can cause bacterial diseases			
Vector	Organisms can spread disease by biting			

3. Human Diseases

Disease	Transmission	Symptoms	Treatment/ prevention
Salmonella (Bacterium)	Uncooked poultry, unhygienic	Sickness diarrhoea	Antibiotics Well cooked food
Gonorrhoea (Bacterium)	Unprotected sex	Discharge pain when urinating	Antibiotics Wear condoms
Malaria (Protist)	Mosquito bites	Fever fatigue headache vomiting	Mosquito nets repellent chloroquine
HIV (Virus)	Body fluids, sex, sharing needles	AIDS: damages immunity	Anti-viral drugs Condoms & don't do drugs!
Measles (Virus)	Airborne – coughs & sneezes	Red skin rash	Painkillers, MMR vaccine

4. Plant Diseases

Disease	Transmission	Symptoms	Prevention/ Treatment
Tobacco Mosaic Virus	Direct contact with diseased plant material and by insects	Mosaic pattern damaged cells preventing photosynthesis	Field hygiene and pest control
Rose Black Spot Fungus	Spores carried by wind and spread by rain from leaf to leaf	Purple spots on leaves, dead leaves, poor flowers	Remove and burn affected leaves, fungicides


5. Defence mechanisms

First line of Defence stops pathogens from entering

- •Skin: outer physical barrier that scabs when broken, skin oil is antiseptic
- Nose: goblet cells release **mucus** which traps pathogens
- Trachea and bronchi: ciliated cells move mucus up & out
- Stomach: hydrochloric acid destroys pathogens

Second line of defence the Immune system attacks invading pathogens. White blood cells can:

- Engulf and digest pathogens (phagocytosis)
- Produce antibodies that attach to the specific antigens on the pathogen and destroy it
- **Produce antitoxins** that destroy bacterial toxins

6. Vaccination will prevent illness

- 1. Inject a small quantity of dead or inactive pathogen
- 2. White blood cells produce antibodies specific to the antigens
- 3. Pathogen is destroyed
- 4. If the same pathogen re-enters the body the white blood cells respond rapidly to produce massive amounts of the correct antibodies, destroying the live pathogen and preventing infection.

MMR vaccine - protects against measles, mumps and rubella **Herd immunity** - immunising a large proportion of the population will stop the spread of disease and protect those that can't be vaccinated

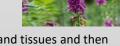
7. Medicines

A drug is any substance that alters how the chemical reactions in the body work.

- Antibiotics kill ONLY bacteria or prevent them from multiplying eg. penicillin
- Painkillers relieve the symptoms only eg. paracetamol
- **Antivirals** target specific viruses and slow down replication. Viruses are hard to destroy without damaging the cell they're in.

8. Antibiotic Resistance: e.g. MRSA

- 1. Mutation occurs when bacteria multiply
- 2. Mutation makes bacteria resistant to antibiotic
- 3. Antibiotic kills all the others
- 4. Less competition for food or space
- 5. New colony of resistant bacteria grows quickly


Causes: Incorrect/overuse of antibiotics, not completing the full course of antibiotics, over-sterile environments e.g. hospitals

9. Drugs

Drugs were traditionally extracted from plants and microorganisms

- Digitalis (heart drug) originates from Foxgloves.
- Aspirin (painkiller) originates from Willow.
- Penicillin (antibiotic) discovered by Alexander Fleming from Penicillium mould.

Drug trials

Stage 1 (Pre-clinical) Tested on human cells and tissues and then animals

Check for toxicity

Stage 2 (clinical): Low doses are tested on healthy human volunteers

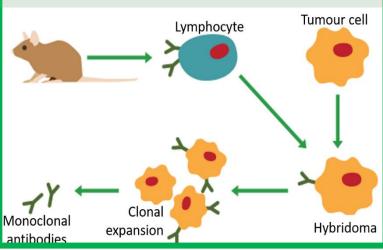
Check for side effects

Stage 3 (clinical): Tested on patients Check for effectiveness and dosage

Placebo – fake drug (looks same, taken same way) used as a control and allows the results from the real drug to be compared

Double blind – doctors and patients don't know who gets the real drug = no bias

È

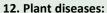

alala en

10. Monoclonal antibodies:

- Produced from a single clone of cells.
- The antibodies are specific to one binding site on one type of antigen
- Target a specific chemical or specific cells in the body.

They are made by:

- 1. injecting a mouse with a specific substance
- 2. mouse lymphocytes make the specific antibody
- 3. lymphocytes are combined with a **tumour** cell to make a **hybridoma** cell
- 4. hybridoma cells are **cloned** to produce many identical cells that all produce the same antibody
- 5. large amounts of antibody can be collected and purified



11. Advantages of monoclonal antibodies:

- Diagnosis such as in **pregnancy tests**
- Measuring the levels of hormones or to detect pathogens
- Locate or identify specific molecules in a cell or tissue by binding to them with a **fluorescent** dye
- Cancer treatments the monoclonal antibody can be bound to a radioactive substance, a toxic drug or a chemical which stops cells growing and dividing. It delivers the substance to the cancer cells without harming other cells in the body.

Disadvantages of monoclonal antibodies:

Not yet as widely used as hoped, due to - **expensive** to produce, cause **side effects** and **ethical issues** of animal testing.

Detected by:

- stunted growth
- spots on leaves
- areas of decay (rot)
- lumps/growths
- malformed stems or leaves
- discolouration
- the presence of pests.

Identification of disease can be made by:

- reference to a gardening manual or website
- taking infected plants to a laboratory to identify the pathogen
- using testing kits that contain monoclonal antibodies

Aphids – penetrate phloem to feed and take products of photosynthesis. Also act as vectors transferring pathogens to the plants.

13. Plant deficiencies

Plants can be damaged by a range of **ion deficiency conditions**:

- stunted growth caused by nitrate deficiency Nitrates are needed for protein synthesis and growth
- **chlorosis** (yellow leaves) caused by magnesium deficiency **Magnesium** is needed to make **chlorophyll**

14.Plant defence mechanisms

Plants have defence mechanisms to avoid damage and disease.

Physical defence responses to resist invasion of microorganisms:

- Cellulose cell walls.
- Tough waxy cuticle on leaves.
- Layers of dead cells around stems (bark on trees) which fall off.

Chemical plant defence responses:

- Antibacterial chemicals.
- Poisons to deter herbivores.

Mechanical adaptations:

- Thorns and hairs deter animals.
- Leaves which droop or curl when touched.
- Mimicry to trick animals.

