

Year 10 Maths

Unit 1: Powers and roots

MATHOPEDIA

The reciprocal of a number is 1 divided by the number.

For a fraction, this has the effect of inverting it (turning it upside down).

e.g. the reciprocal of $\frac{5}{2}$ is $\frac{3}{5}$

power of -1...

EXAMPLE:

Evaluate (find the value)

(a)
$$\left(\frac{3}{4}\right)^{-1} = \frac{4}{3} \leftarrow$$

(b)
$$5^{-1} = \frac{1}{5}$$

(c)
$$\left(\frac{1}{7}\right)^{-1} = \frac{7}{1} = 7$$

"in the form" tells us how the answer should look

This is the reciprocal

5 can be written as $\frac{5}{1}$ so its reciprocal is $\frac{1}{5}$

other negative powers

EXAMPLE:

Evaluate $\left(\frac{4}{5}\right)^{-2}$

$$= \left(\frac{5}{4}\right)^2 \checkmark$$

$$=\frac{25}{16}$$

The negative part of the power creates a reciprocal

Then use the number part of the power

> The power doesn't apply to the 4

more negative powers

EXAMPLE:

Write in the form 3^n .

(a)
$$81 = 3^4$$

(b)
$$\frac{1}{3}$$
 = 3^{-1}

(c)
$$\frac{1}{9}$$
 $=\frac{1}{3^2} = 3^{-2}$

EXAMPLE:

Write $7n^{-3}$ as a fraction.

$$= 7 \times n^{-3}$$
$$= 7 \times \frac{1}{n^3}$$
$$= \frac{7}{n^3}$$

EXAMPLE:

Write $\frac{1}{m^5}$ using a power

$$= m^{-5}$$

EXAMPLE:

Write $\frac{1}{4m^5}$

using a power

$$=\frac{1}{4}m^{-5}$$

×/÷ with indices...

EXAMPLE:

Simplify $p^5 \times p^7$

$$= p^{12}$$

EXAMPLE:

Simplify $7m^6 \times 3m^{-2}$

$$=21m^4$$

EXAMPLE:

Simplify $\frac{3x^7}{6x^2}$

$$=\frac{1}{2}x^5$$

power 0...

Anything to power 0 is 1.

EXAMPLE:

Simplify k^0

$$= 1$$

EXAMPLE:

Simplify $5k^0$

$$=5\times1=5$$

EXAMPLE:

$$= 1$$

power of power...

For a power of a power, we multiply the indices.

EXAMPLE:

Simplify $(x^6)^5$

$$= x^{30}$$

EXAMPLE:

Simplify $(4x^6)^3$

$$=64x^{18}$$

EXAMPLE:

Simplify $(5a^4b^7)^2$

$$=25a^8b^{14}$$

square the 5, then the a^4 , then the b^7

combining rules...

EXAMPLE:

Simplify $\frac{8h^4 \times 2h^5}{2h^{-3}}$

$$=\frac{16h^9}{2h^{-3}}$$

$$\Rightarrow$$
 = $8h^{12}$

EXAMPLE: Simplify

$$(3t^5 \times t)^2 \times t^{-12}$$

$$=(3t^6)^2 \times t^{-12}$$

$$=9t^{12} \times t^{-12}$$

$$=9t^0 = 9 \times 1 = 9$$

When we multiply with the same **base**, we add the powers

Multiply the numbers before adding powers

> 4 needs to be cubed too

 $\frac{5}{6}$ simplifies to $\frac{1}{2}$

When we divide with the same base, we subtract the powers

Simplify the

numerator

 $16 \div 2 = 8$

and 9 - -3 = 12

Anything to

power 0...

 $k^{0} = 1$

then we need to

multiply by 5

$$= 1$$

$$=5\times1=5$$

Simplify $(5k)^0$

$$= 1$$

In a fraction power, the denominator is a root and the numerator is a power. e.g.

$$16^{\frac{5}{2}} = (\sqrt{16})^5 \text{ or } \sqrt{16^5}$$

$$64^{\frac{2}{3}} = (\sqrt[3]{64})^2 \text{ or } \sqrt[3]{64^2}$$

A **rational** number can be written as a fraction or integer.

An **irrational** number can't. Its decimal representation goes on forever, without recurring. (π is irrational.)

A **surd** is an *irrational* number which involves a root.

e.g.
$$\sqrt{2}$$
, $5 - \sqrt{7}$, $\sqrt[3]{10}$

Not all roots are surds. e.g. $\sqrt{9}$ isn't, because it equals 3, which is rational.

add/subtract surds...

When adding and subtracting, we collect terms in the same surd.

EXAMPLE:

$$= 8\sqrt{5}$$

(b)
$$9\sqrt{2} + 6\sqrt{7} - 4\sqrt{2}$$

(a) $7\sqrt{5} + 2\sqrt{5} - \sqrt{5}$

$$=5\sqrt{2}+6\sqrt{7}$$

fraction powers...

EXAMPLE:

Evaluate
$$125^{\frac{2}{3}}$$

$$= \left(\sqrt[3]{125}\right)^2$$

$$=(5)^2$$

$$= 25$$

EXAMPLE:

Easiest to start with the root

Then the power

Just the root this

time, as the

numerator is 1

 $2^4 = 16$

The negative

power is a

reciprocal

Then apply the

fraction power

Evaluate
$$16^{\frac{1}{4}}$$

$$=\sqrt[4]{16}$$

$$\Rightarrow$$
 = 2

negative too...

EXAMPLE:

Evaluate
$$\left(\frac{16}{25}\right)^{-\frac{3}{2}}$$

$$= \left(\frac{25}{16}\right)^{\frac{3}{2}}$$

$$=\frac{\left(\sqrt{25}\right)^3}{\left(\sqrt{16}\right)^3}$$

$$=\frac{5^3}{4^3}$$

$$=\frac{125}{64}$$

7 + 2 - 1 = 8

Only the like terms can be collected

multiply/divide...

EXAMPLE: Write as a single surd: $\sqrt{8} \times \sqrt{5}$

$$= \sqrt{8 \times 5} = \sqrt{40}$$

EXAMPLE:

Simplify $3\sqrt{5} \times 4\sqrt{2}$

$$=12\sqrt{10}$$

EXAMPLE:

Simplify $\frac{\sqrt{21}}{\sqrt{7}}$

$$= \sqrt{21 \div 7}$$
$$= \sqrt{3}$$

simplifying surds...

A surd is simplified if the number under the root is as small as possible.

EXAMPLE:

Simplify $\sqrt{75}$

$$= \sqrt{25} \times \sqrt{3}$$

$$= 5\sqrt{3}$$

EXAMPLE:

Simplify $6\sqrt{27}$

$$= 6 \times \sqrt{9} \times \sqrt{3}$$

$$= 6 \times 3 \times \sqrt{3}$$

$$= 18\sqrt{3}$$

sura bra

This doesn't work with adding: $\sqrt{8} + \sqrt{5}$ is not equal to

 $\sqrt{13}$

A grid is a good way to expand the brackets

Multiply 3 & 4, then the surds

Collect the integers and surds separately

Find a **square number** that's a factor of 75

EXAMPLE:

Simplify $\sqrt{180}$

$$=\sqrt{9}\times\sqrt{20}$$

$$=3\times\sqrt{20}$$

$$= 3 \times \sqrt{4} \times \sqrt{5}$$

$$= 3 \times 2 \times \sqrt{5}$$

$$=6\sqrt{5}$$

surd brackets...

EXAMPLE: Expand $\sqrt{3}(2+\sqrt{5})$

$$\begin{array}{c|cc}
2 & +\sqrt{5} \\
\sqrt{3} & 2\sqrt{3} & \sqrt{15}
\end{array}$$

$$=2\sqrt{3}+\sqrt{15}$$

EXAMPLE:

Expand and simplify

$$(2+\sqrt{3})(6-\sqrt{3})$$

$$\begin{array}{c|cccc}
2 & +\sqrt{3} \\
6 & 12 & 6\sqrt{3} \\
-\sqrt{3} & -2\sqrt{3} & -3
\end{array}$$

$$= 12 + 6\sqrt{3} - 2\sqrt{3} - 3$$

$$= 9 + 4\sqrt{3}$$

 $\sqrt{3} \times \sqrt{3}$ is just 3

Sometimes we can simplify further, using another square number

We consider a fraction simplified if it doesn't have a surd in the denominator.

The process of getting rid of a surd from the denominator is called **rationalising**.

1-term denominator...

EXAMPLE: Simplify

(a)
$$\frac{5}{\sqrt{2}}$$

$$= \frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{5\sqrt{2}}{2}$$

(b)
$$\frac{5}{3\sqrt{2}}$$

$$= \frac{5}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{5\sqrt{2}}{6}$$

$$(c) \frac{12}{5\sqrt{3}}$$

$$= \frac{12}{5\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{12\sqrt{3}}{15}$$

$$= \frac{4\sqrt{3}}{5}$$

$3 - \sqrt{2}$ is called the **conjugate** of $3 + \sqrt{2}$

Multiply the numerator and denominator by the surd

$$\sqrt{2} \times \sqrt{2} = 2$$

A grid can help with the double brackets

Multiply by $\sqrt{2}$ not by $3\sqrt{2}$

$$3\sqrt{2} \times \sqrt{2}$$
$$= 3 \times 2 = 6$$

Multiply by $\sqrt{2}$ not by $3\sqrt{2}$

$$5\sqrt{3} \times \sqrt{3}$$
$$= 5 \times 3 = 15$$

2-term denominator...

EXAMPLE: Simplify $\frac{5}{3+\sqrt{2}}$

$$=\frac{5}{3+\sqrt{2}}\times\frac{3-\sqrt{2}}{3-\sqrt{2}}$$

$$=\frac{5(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}$$

$$\begin{array}{c|cc}
3 & +\sqrt{2} \\
3 & 9 & 3\sqrt{2} \\
-\sqrt{2} & -3\sqrt{2} & -2
\end{array}$$

$$=\frac{15-5\sqrt{2})}{9+3\sqrt{2}-3\sqrt{2}-2}$$

$$=\frac{15-5\sqrt{2}}{7}$$

$$+3\sqrt{2} - 3\sqrt{2} = 0$$

and $9 - 2 = 7$